Z 2 2 2009 Clinical Practice Guideline on the Evaluation and Management of Heparin-Induced Thrombocytopenia (HIT) Adam Cuker¹ and Mark A. Crowther² ¹University of Pennsylvania, Philadelphia, PA; ²St. Joseph's Hospital and McMaster University, Hamilton, Ontario, Canada Presented by the American Society of Hematology, adapted in part from the: American College of Chest Physicians Evidence-Based Clinical Practice Guideline on Antithrombotic and Thrombolytic Therapy (8th Edition). # I. History and Physical Examination: Evaluating the Clinical Probability of HIT A. Features of the history and physical examination that support a diagnosis of HIT | Feature | Comments | | | |--|---|--|--| | Fall in platelet count 50% | From highest platelet count after heparin exposure; platelet count fall is 30-50% in 10% of cases | | | | Fall in platelet count begins 5-14 days after heparin exposure | | | | | Fall in platelet count begins 48 hours after heparin exposure | In patients with previous heparin exposure within last 100 days | | | | Nadir platelet count 20 x 10 ⁹ /L | May be < 20 x 10 ⁹ /L in cases associated with thrombosis and DIC | | | | Venous or arterial thrombosis | Occurring 5 days after heparin exposure and up to 30 days after heparin cessation | | | | Skin necrosis | At subcutaneous heparin injection sites | | | | Anaphylactoid reaction | Within 30 minutes after intravenous heparin bolus | | | | Absence of alternative causes of thrombocytopenia | Such as infection, other medications known to cause thrombocytopenia, cardiopulmonary bypass within previous 96 hours, etc. | | | | Absence of petechiae and other significant bleeding | | | | Cover Image: *In vivo* microscopy showing monocytes (in red), platelets (in green), and areas of overlap (in yellow) being incorporated into a growing thrombus in a mouse model of HIT. Courtesy of L. Rauova and M. Poncz, Children's Hospital of Philadelphia. #### B. The 4Ts: A clinical probability scoring model | 4T's | 2 Points | 1 Point | 0 Points | |-------------------------------------|--|--|---| | <u>T</u> hrombocytopenia | Platelet count
fall > 50% and
platelet nadir 20
x 109/L | Platelet count fall
30-50% or platelet
nadir 10-19 x 10 ⁹ /L | Platelet count
fall < 30% or
platelet nadir <
10 x 10°/L | | Timing of platelet count fall | Clear onset
between days
5-14 or platelet
fall 1 day (prior
heparin exposure
within 30 days) | Consistent with days
5-14 fall, but not
clear (e.g. missing
platelet counts) or
onset after day 14
or fall 1 day (prior
heparin exposure
30-100 days ago) | Platelet count
fall 4 days
without recent
exposure | | <u>Thrombosis</u> or other sequelae | New thrombosis
(confirmed);
skin necrosis
at heparin
injection sites;
anaphylactoid
reaction after IV
heparin bolus | Progressive
or recurrent
thrombosis:
Non-necrotizing
(erythematous) skin
lesions: Suspected
thrombosis (not
confirmed) | None | | oTher causes of thrombocytopenia | None apparent | Possible | Definite | High probability: 6-8 points; intermediate probability: 4-5 points; low probability: 3 points. Adapted from Lo GK et al., J Thromb Haemost 2006. The 4Ts model has not been externally validated. It may be used as a guide for clinicians, but should not substitute for clinical judgment. In clinical studies, the 4Ts model has demonstrated excellent sensitivity (low probability score indicates low probability of HIT), but limited specificity (intermediate or high probability score may or may not indicate the presence of HIT). ## II. Laboratory Diagnosis | Assay category | Mechanism | Examples | Sensitivity | Specificity | Comments | |----------------|--|--|-------------|-------------|--| | Immunologic | Detects
antibodies
against PF4/
heparin,
regardless of
their capacity
to activate
platelets | Polyspecific ELISA IgG-specific ELISA PGIA | >95% | 50-89% | OD of
ELISA
result
correlates
with clinical
probability
of HIT | | Functional | Detects
antibodies
that induce
heparin-
dependent
platelet
activation | 1. SRA
2. HIPA
3. PAT | >90% | >90% | Not
available
at many
centers;
may require
referral to
a reference
laboratory | PF4, platelet factor 4; PGIA, particle gel immunoassay; OD, optical density; SRA, serotonin release assay; HIPA, heparin-induced platelet activation assay; PAT, platelet aggregation test. # III. Diagnostic and Initial Treatment Algorithm #### IV. Treatment #### A. Non-heparin anticoagulants: selection, dosing, and monitoring | Agent | Graded recommendation ¹ | Initial dosing | Monitoring | |---------------------------|------------------------------------|--|--| | Danaparoid ² | 1B | Bolus: Weight <60 kg ▶ 1500 U Weight 60-75 kg ▶ 2250 U Weight 75-90 kg ▶ 3000 U Weight >90 kg ▶ 3750 U Accelerated initial infusion: 400 U/hr x 4 hrs, then 300 U/hr x 4 hrs Maintenance infusion: Normal renal function ▶ 200 U/hr Renal insufficiency ▶ 150 U/hr | Adjust dose
to anti-Xa
level of 0.5-
0.8 U/ml
(if assay is
available). | | Lepirudin | 1C | Bolus: ³ 0.2 mg/kg (only if life- or limb-threatening thrombosis is present) Continuous infusion: ³ Cr < 1.0 mg/dl ▶ 0.10 mg/kg/hr Cr 1.0-1.6 mg/dl ▶ 0.05 mg/kg/hr Cr 1.6-4.5 mg/dl ▶ 0.01 mg/kg/hr Cr >4.5 mg/dl ▶ 0.005 mg/kg/hr | Adjust dose
to APTT
of 1.5-2.0
times patient
baseline.
Monitor
APTT every 4
hours during
dose titration. | | Argatroban | 10 | Bolus: None Continuous infusion: Normal organ function ▶ 2 mcg/kg/min Liver dysfunction (total serum bilirubin >1.5 mg/dl), heart failure, post-cardiac surgery, anasarca ▶ 0.5-1.2 mcg/kg/min | Adjust dose
to APTT
of 1.5-3.0
times patient
baseline.
Monitor
APTT every 4
hours during
dose titration. | | Bivalirudin⁴ | 2C | Bolus: None Continuous infusion: Normal organ function ▶ 0.15 mg/kg/hr Renal or hepatic insufficiency ▶ dose reduction may be necessary | Adjust dose
to APTT
of 1.5-2.5
times patient
baseline. | | Fondaparinux ⁵ | 2C | No specific recommendations given
supporting efficacy and appropriate | | Adapted from Warkentin TE et al., Chest 2008. ¹American College of Chest Physicians Grading System: 1=strong recommendation; 2=weak recommendation; A=based on high quality evidence; B=based on moderate quality evidence; C=based on low quality evidence ²Not available in U.S. ³Lower than FDA-approved dosing. ⁴FDA-approved for patients with HIT only during percutaneous coronary intervention. ⁵Not approved for treatment of HIT. #### B. Transitioning to warfarin - HIT patients are at risk of venous limb gangrene during initiation of warfarin - Warfarin should not be initiated until platelet count is 150 x 10°/L (Grade 1B). - Initial warfarin dose should be 5 mg/day. Larger loading doses should be avoided (Grade 1B). - A parenteral non-heparin anticoagulant should be overlapped with warfarin for 5 days and until INR has reached intended target (Grade 1B). - Because argatroban raises the INR, the following steps should be taken when transitioning a patient from argatroban to warfarin: #### If argatroban dose is 2 mcg/kg/min - Stop argatroban when INR on combined argatroban and warfarin is >4 - 2. Repeat INR in 4-6 hours - 3. If INR is <2, restart argatroban - 4. Repeat procedure daily until INR 2 is achieved #### If argatroban dose is >2 mcg/kg/min - 1. Reduce argatroban dose to 2 mcg/kg/min - 2. Repeat INR in 4-6 hours - Stop argatroban when INR on combined argatroban and warfarin is >4 - 4. Repeat INR in 4-6 hours - 5. If INR is <2, restart argatroban - 6. Repeat procedure daily until INR 2 is achieved #### C. Duration of anticoagulation - Bilateral lower extremity compression ultrasonography should be performed in all patients with HIT, whether or not there is clinical evidence of lower-limb DVT (Grade 1C), because the finding of DVT may influence the recommended duration of anticoagulation. - For patients with HIT-associated thrombosis (i.e. HITT), anticoagulate for a defined course (typically 3-6 months) as with other provoked thromboses. - For patients with HIT without thrombosis (i.e. isolated HIT), the optimal duration of anticoagulation is unknown. Because there is an elevated risk of thrombosis extending at least 30 days after the diagnosis of HIT, anticoagulation for at least one month should be considered. - For all patients, anticoagulation management should be based on an individualized risk/benefit assessment. #### D. Platelet transfusion - Due to theoretical risk that platelet transfusion may precipitate thrombosis in HIT, prophylactic platelet transfusions should not be given to patients with confirmed or strongly suspected HIT (Grade 2C). - Platelet transfusion may be appropriate in situations of diagnostic uncertainty, high bleeding risk, or clinically significant bleeding. # V. Heparin Re-Exposure in Patients with a History of HIT #### A. Cardiac and vascular surgery HIT laboratory testing should be used to determine the safety of exposing a patient with a history of HIT to intraoperative heparin: | Clinical | Laboratory profile | | Recommended intraoperative | | |-----------------|--------------------|------------------|---|--| | picture | Immunologic assay | Functional assay | anticoagulation ^{1, 2} | | | Remote HIT | Negative | Negative | 1. Use UFH (Grade 1B) | | | Subacute
HIT | Positive | Negative | Delay surgery, if possible, until immunologic assay becomes negative (Grade 1B) If surgery cannot be delayed, use UFH (Grade 2C) | | | Acute HIT | Positive | Positive | Delay surgery, if possible, until functional and immunologic assays become negative (Grade 1B) If surgery cannot be delayed, use bivalirudin (Grade 1B) | | If pre- or post-operative anticoagulation is indicated, a non-heparin anticoagulant should be used. American College of Chest Physicians Grading System: 1=strong recommendation; 2=weak recommendation; A=based on high quality evidence; B=based on moderate quality evidence; C=based on low quality evidence UFH, unfractionated heparin. #### B. Cardiac catheterization/percutaneous coronary intervention | Clinical picture | Laboratory profile
Immunologic assay Functional assay | | Recommended intraprocedural anticoagulation ¹ | | |------------------|--|----------|--|--| | Remote HIT | Negative | Negative | Use a non-heparin anticoagulant [bivalirudin (Grade 1B), argatroban (Grade 1C), lepirudin (Grade 1C), or danaparoid (Grade 1C)] If a non-heparin anticoagulant is not available, use UFH | | | Subacute
HIT | Positive | Negative | 1. Use a non-heparin anticoagulant [bivalirudin (Grade 1B), argatroban | | | Acute HIT | Positive | Positive | (Grade 1C), lepirudin (Grade 1C), or danaparoid (Grade 1C)] | | ¹American College of Chest Physicians Grading System: 1=strong recommendation; 2=weak recommendation; A=based on high quality evidence; B=based on moderate quality evidence; C=based on low quality evidence.