NCCN Guidelines Version 2.2014 Sub-Committees

Senior Adult Oncology

Breast/Gynecologic Cancers
- Tracey O'Connor, MD †
- Roswell Park Cancer Institute

- Ewa Mrozak, MD †‡
 - The Ohio State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute

- Hope S. Rugo, MD †‡
 - UCSF Helen Diller Family Comprehensive Cancer Center

- William P. Tew, MD †Þ
 - Memorial Sloan-Kettering Cancer Center

Bladder, Kidney, and Prostate Cancers
- Mollie deShazo, MD †
 - University of Alabama at Birmingham Comprehensive Cancer Center

Non-Small Cell Lung Cancers
- Apar Kishor P. Ganti, MD †
 - UNMC Eppley Cancer Center at The Nebraska Medical Center

Head and Neck Cancers/CNS Cancers
- Alva B. Weir, III, MD †‡
 - St. Jude Children's Research Hospital/
 - The University of Tennessee Health Science Center

Genitourinary, Lung, and Central Nervous System (CNS) Cancers

Geriatric Assessment
- Harvey Jay Cohen, MD †
 - Duke Cancer Institute

- Martine Extermann, MD, PhD †
 - Moffitt Cancer Center

- Holly M. Holmes, MD †
 - The University of Texas MD Anderson Cancer Center

- June M. McKoy, MD, JD, MBA
 - Robert H. Lurie Comprehensive Cancer Center of Northwestern University

- Nancy L. Keating, MD, MPH
 - Dana-Farber/Brigham and Women's Cancer Center

- Rebecca A. Silliman, MD, PhD, MPH
 - Consultant

- Louise C. Walter, MD
 - UCSF Helen Diller Family Comprehensive Cancer Center

- Beatriz Korc-Grodzicki, MD, PhD
 - Memorial Sloan-Kettering Cancer Center

- Ilene S. Browner, MD †
 - The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

GI Cancers
- Efrat Dotan, MD †
 - Fox Chase Cancer Center

- Ilene S. Browner, MD †
 - The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Psychosocial/Palliative Care
- Mohana B. Karlekar, MD £
 - Vanderbilt-Ingram Cancer Center

Specialties Index
- Surgery/Surgical oncology
- Medical oncology
- Hematology oncology
- Radiation oncology
- Geriatric medicine
- Internal medicine, including family practice and preventive management
- Psychiatry/psychology, including health behavior
- Supportive care, including palliative and pain management
- Bone marrow transplantation
- Pharmacology/Pharmacy
NCCN Guidelines Version 2.2014 Table of Contents

Senior Adult Oncology

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCCN Senior Adult Oncology Panel Members</td>
<td></td>
</tr>
<tr>
<td>NCCN Senior Adult Oncology Sub-Committee Members</td>
<td></td>
</tr>
<tr>
<td>Summary of the Guidelines Updates</td>
<td></td>
</tr>
<tr>
<td>Approach to Decision Making in the Older Adult (SAO-1)</td>
<td></td>
</tr>
<tr>
<td>Assessment of Risk Factors (SAO-2)</td>
<td></td>
</tr>
<tr>
<td>Special Considerations for Patients Able to Tolerate Treatment (SAO-3 and SAO-4)</td>
<td></td>
</tr>
<tr>
<td>Upper, Middle, and Lower Quartiles of Life Expectancy for Women and Men at Selected Ages (SAO-A)</td>
<td></td>
</tr>
<tr>
<td>Disease-Specific Issues Related to Age (SAO-B)</td>
<td></td>
</tr>
<tr>
<td>Comprehensive Geriatric Assessment (SAO-C)</td>
<td></td>
</tr>
<tr>
<td>Assessment of Gait and Treatment Recommendations (SAO-D)</td>
<td></td>
</tr>
<tr>
<td>Assessment of Cognitive Function (SAO-E)</td>
<td></td>
</tr>
<tr>
<td>Assessment of Adherence (SAO-F)</td>
<td></td>
</tr>
<tr>
<td>Insomnia (SAO-G)</td>
<td></td>
</tr>
<tr>
<td>Procedure for Functional Assessment Screening in Elderly Persons (SAO-H)</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Trials: NCCN believes that the best management for any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged. To find clinical trials online at NCCN Member Institutions, [click here](https://nccn.org/clinical_trials/physician.html).

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise specified. See [NCCN Categories of Evidence and Consensus](https://nccn.org).
NCCN Guidelines Version 2.2014 Updates
Senior Adult Oncology

Summary of the changes in the 2.2014 version of the NCCN Guidelines for Senior Adult Oncology from the 1.2014 version include:

MS-1 The discussion section was updated to reflect the changes in the algorithm.

Summary of the changes in the 1.2014 version of the Guidelines for Senior Adult Oncology from the 2.2013 version include:

SAO-1
- Does the patient have a life expectancy that puts him or her at moderate or high risk of dying or suffering from cancer during his or her lifetime?
 - Has been modified to the following, “Is the patient at moderate or high risk of dying or suffering from cancer considering his or her overall life expectancy?”
- “Assess the patient’s goals and values regarding the management of his or her cancer” is new to the page.
- “Are the patient’s goals and values consistent with wanting anti-cancer therapy?”
- “Consider consult from ethics committee or social worker” has been modified to include, “or consider palliative care.”

SAO-2
- “Decubitus or pressure ulcers” is a new bullet under comorbidities.
- “No transportation” was modified to, “transportation barriers/access problems.”
- Lack of prescription drug coverage was changed to, “Under-insurance and/or high out-of-pocket costs for medications.”

SAO-3
- The following bullets are new to surgery:
 - American Geriatrics Society Task Force and American College of Surgeons provided general guidelines for older adults undergoing surgery. These guidelines can be applied to older cancer patients undergoing surgery.
 - There are data to suggest that an increased need for functional assistance pre-surgery (measured by activities of daily living, instrumental activities of daily living, and performance status) predicts postoperative complications, extended hospital stay, and 6-month mortality in older patients undergoing cancer surgery.
 - Impaired cognitive status is a risk factor for postoperative complications, prolonged length of stay, and 6-month overall mortality postoperatively.
 - In patients undergoing general surgery
 - Older age is a risk factor of postoperative delirium.
 - Delirium is a risk factor for functional decline. See Assessment of Cognitive Function (SAO-E)
 - Preventive measures exist for delirium
 - Yale Delirium Prevention Trial and Hospitalized Elder Life Program (HELP): http://info.med.yale.edu/intmed/elp/pages/background.htm

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
SAO-3 continued

- The following bullets are new to systemic therapy:
 - Chemotherapy toxicity risk can be predicted by parameters that are typically included in a Comprehensive Geriatric Assessment (CGA). These tools are awaiting additional validation.

SAO-4

- Under Bone Marrow Suppression the following were deleted:
 - Administer a decreased dose of chemotherapy if palliation is the goal
 - See NCCN Guidelines for Cancer- and Chemotherapy-Induced Anemia
 - The first bullet for Cardiac Toxicity was modified, “Monitor for symptomatic or asymptomatic congestive heart failure (CHF).”

SAO-B (1 of 26)

- A new page was added to the beginning of the disease-specific section providing a link and listing of the disease sites covered in the section.
- A link has been added to each page in this section that takes the reader to the NCCN Guidelines for Treatment of Cancer by Site for further details regarding specific treatment options.

SAO-B (7 of 26)

- Modified the 3rd bullet adding, “In patients with glioblastoma who are older than age 70, hypofractionated radiation therapy alone over two weeks OR temozolomide alone each produce an overall survival benefit compared to standard fractionated radiation therapy over six weeks. This study also confirms the predictive benefit of MGMT promoter methylation status with temozolomide use.”

SAO-B (15 of 26)

- MPT as Initial Therapy has been revised to the following, “Immunomodulator-based as Initial Therapy.”
 - DVT Prophylaxis has been revised to the following, “VTE Prophylaxis.”

SAO-B (18 of 26)

- Myelodysplastic Syndromes is new to the disease-specific pages of the guideline.

SAO-B (26 of 26)

- 4th bullet has been modified to include, “ADT significantly decreases muscle mass and treatment-related sarcopenia appears to contribute to frailty and increased risk of falls in older men.”
 - 5th bullet is new to the page, “In older adults, newer hormonal therapies can potentially replace or delay the usage of cytotoxic chemotherapy and may be used in patients who would otherwise be ineligible for chemotherapy.”

SAO-C (2 of 3)

- Under Polypharmacy, 3rd bullet was modified, Evaluate for over/under-use, “Carefully review indications, duration of therapy, and dosage when using these medications or classes of medications.”
 - Oxybutynin was added to the class of medications listed.
 - 7th bullet is new to the page, “Evaluate adherence to therapy” (See Assessment of Adherence SAO-F).

SAO-E

- Assessment of Cognitive Function is new to the guideline.

SAO-F

- Assessment of Adherence is new to the guideline.

SAO-G

- Insomnia is new to the page.
Is the patient at moderate or high risk of dying or suffering from cancer considering his or her overall life expectancy? a, b

No → Symptom management/supportive care
See NCCN Guidelines for Palliative Care

Yes →

Does this patient have decision-making capacity? c
Patients must have the ability to:
• Understand the relevant information about proposed diagnostic tests or treatments
• Appreciate their situation (including their underlying values and current medical situation)
• Use reason to make a decision
• Communicate their choice

No →

• Obtain information from:
 ▶ Patient's proxy
 ▶ Advance directive
 ▶ Living will
 ▶ Health care power of attorney
 ▶ Clinician's documentation
• Consider consult from ethics committee or social worker or consider Palliative Care (See NCCN Guidelines for Palliative Care)

Yes →

• Assess the patient's goals and values regarding the management of his or her cancer
• Are the patient’s goals and values consistent with wanting anti-cancer therapy? d

No → Symptom management/supportive care
(See NCCN Guidelines for Palliative Care)

Yes → Assessment of Risk Factors
(See SAO-2)

a Life expectancy calculators are available at www.eprognosis.com. Note that these calculators are used to determine anticipated life expectancy (independent of the cancer). They could be utilized in clinical decision-making to weigh whether the cancer is likely to shorten the patient’s life expectancy or whether the patient is likely to become symptomatic from cancer during his or her anticipated life expectancy. Note that these calculators should be used in conjunction with clinical judgement.

b See histograms for age-specific life expectancy (SAO-A).

Does the patient have risk factors for adverse outcomes from cancer treatment?

- Comorbidities\(^e\)
 - cardiovascular disease\(^f\)
 - renal insufficiency\(^g\)
 - neuropathy
 - anemia
 - osteoporosis
 - See NCCN Bone Health Task Force

- GI problems
- diabetes
- lung disease
- hearing or vision loss
- prior cancer diagnosis and treatment
- chronic infections
- decubitus or pressure ulcers

- Geriatric syndromes\(^e\)
 - functional dependency (ADL, IADL)
 - mobility problems
 - falls
 - dementia
 - delirium
 - depression
 - nutritional deficiency
 - polypharmacy

- Socioeconomic issues
 - poor living conditions
 - no caregiver or limited social support
 - low income
 - transportation barriers/access problems
 - under-insurance and/or high out-of-pocket costs for medications

\(^e\)See Comprehensive Geriatric Assessment (SAO-C).

\(^f\)Older age has been associated with increased risk for congestive heart failure (CHF) in patients receiving cytotoxic and targeted therapies.

\(^g\)The panel recommends calculation of creatinine clearance to assess renal function for all patients.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Treat as recommended in disease-specific treatment guidelines See Disease-Specific Issues Related to Age (SAO-B), (SAO-3), and NCCN Guidelines for Treatment of Cancer by Site</td>
</tr>
<tr>
<td>Yes</td>
<td>Consider alternate treatment options to reduce toxicity</td>
</tr>
<tr>
<td>No</td>
<td>Symptom management/supportive care See NCCN Guidelines for Supportive Care</td>
</tr>
</tbody>
</table>

See special considerations for patients able to tolerate treatment (SAO-3) and (SAO-B)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
SPECIAL CONSIDERATIONS FOR PATIENTS ABLE TO TOLERATE TREATMENT

Surgery
- In general, age is not the primary consideration for surgical risk.
- Emergency surgery carries increased risk of complications.
- Assess physiologic status.
- American Geriatrics Society (AGS) Task Force and American College of Surgeons provided general guidelines for older adults undergoing surgery. These guidelines can be applied to older cancer patients undergoing surgery.
- There are data to suggest that an increased need for functional assistance pre-surgery (measured by ADL, IADL, and PS) predicts postoperative complications, extended hospital stay, and 6-month mortality in older patients undergoing cancer surgery.
- Impaired cognitive status is a risk factor for postoperative complications, prolonged length of stay, and 6-month overall mortality postoperatively.
- In patients undergoing general surgery
 - Older age is a risk factor for postoperative delirium.
 - Delirium is a risk factor for functional decline.
- Preventive measures exist for delirium
 - Yale Delirium Prevention Trial and Hospitalized Elder Life Program (HELP):
 - National Institute for Health and Clinical Excellence (NICE) Guideline for Prevention of Delirium:
- Use caution with concurrent chemoradiation therapy; dose modification of chemotherapy may be necessary.
- Nutritional support and pain control are needed if radiation therapy-induced mucositis is present.

Systemic Therapy
- Chemotherapy toxicity risk can be predicted by parameters that are typically included in a Comprehensive Geriatric Assessment (CGA). These tools are awaiting additional validation.
- Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score
- Cancer and Aging Research Group (CARG) Chemo Toxicity Calculator

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
SPECIAL CONSIDERATIONS FOR PATIENTS ABLE TO TOLERATE TREATMENT

Diarrhea
- Consider early aggressive rehydration
- Manage with octreotide if oral preparations are ineffective (See NCCN Guidelines for Palliative Care)

Constipation
- See NCCN Guidelines for Palliative Care

Nausea/vomiting
- Early hospitalization is needed for patients who develop dysphagia/diarrhea
- Provide nutritional support
- See NCCN Task Force: Prevention and Management of Mucositis in Cancer Care

Mucositis
- Prophylactic colony-stimulating factors are needed when dose intensity is required for response or cure (See NCCN Guidelines for Myeloid Growth Factors)

Bone marrow suppression
- Consider alternative regimens with non-neurotoxic drugs
- Monitor hearing loss and avoid neurotoxic agents if significant hearing loss is present
- Monitor cerebellar function if high-dose cytarabine is present
- Monitor for peripheral neuropathy

Neurotoxicity
- Consider alternative regimens with non-neurotoxic drugs
- Monitor hearing loss and avoid neurotoxic agents if significant hearing loss is present
- Monitor cerebellar function if high-dose cytarabine is present
- Monitor for peripheral neuropathy

Falls
- Assessment of history of falls, balance, and gait difficulties is recommended for all patients.

Cardiac toxicity
- Monitor for symptomatic or asymptomatic congestive heart failure (CHF)
 - Caution with use of anthracyclines; consider alternative treatment
 - Caution with use of trastuzumab (among patients with a normal ejection fraction, risk factors for CHF include receipt of an anthracycline-based regimen, baseline LVEF of 50%-54%, and hypertensive medicines)

Renal toxicity
- Calculate creatinine clearance to assess renal function
- Adjust dose for glomerular filtration rate to reduce systemic toxicity

Insomnia
- Benzodiazepines or other sedative-hypnotics should not be used as first-line treatment for insomnia in older adults.
- Non-pharmacologic methods such as cognitive behavioral therapy and lifestyle modifications are preferred.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

References:
For example, a 75-year-old woman in average health is likely to live 12 years; if she is in excellent health, she is likely to live at least 17 years; if she is in poor health, she is likely to live fewer than 7 years.

Reprinted and adapted with permission from Walter LC, Covinsky KE. Cancer screening in elderly patients. JAMA 2001;285:2750-2756.
DISEASE-SPECIFIC ISSUES RELATED TO AGE

This section of the guidelines includes data that are specific to the care of older adults with the following cancer types. See NCCN Guidelines for Treatment of Cancer by Site www.nccn.org for further details regarding specific treatment options.

<table>
<thead>
<tr>
<th>Disease Type</th>
<th>Page Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Cancer</td>
<td>SAO-B (5 of 26)</td>
</tr>
<tr>
<td>Central Nervous System Cancers</td>
<td>SAO-B (7 of 26)</td>
</tr>
<tr>
<td>Gastrointestinal Cancers</td>
<td></td>
</tr>
<tr>
<td>Colon Cancer</td>
<td>SAO-B (9 of 26)</td>
</tr>
<tr>
<td>Rectal Cancers</td>
<td>SAO-B (11 of 26)</td>
</tr>
<tr>
<td>Genitourinary Cancers</td>
<td></td>
</tr>
<tr>
<td>Bladder Cancer</td>
<td>SAO-B (4 of 26)</td>
</tr>
<tr>
<td>Kidney Cancer</td>
<td>SAO-B (14 of 26)</td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td>SAO-B (26 of 26)</td>
</tr>
<tr>
<td>Gynecologic Cancers</td>
<td></td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>SAO-B (23 of 26)</td>
</tr>
<tr>
<td>Head and Neck Cancers</td>
<td>SAO-B (12 of 26)</td>
</tr>
<tr>
<td>Lung Cancers</td>
<td></td>
</tr>
<tr>
<td>Non-Small Cell Lung Cancer</td>
<td>SAO-B (20 of 26)</td>
</tr>
<tr>
<td>Small Cell Lung Cancer</td>
<td>SAO-B (22 of 26)</td>
</tr>
<tr>
<td>Hematologic Malignancies</td>
<td></td>
</tr>
<tr>
<td>Acute Lymphoblastic Leukemia</td>
<td>SAO-B (2 of 26)</td>
</tr>
<tr>
<td>Acute Myeloid Leukemia</td>
<td>SAO-B (3 of 26)</td>
</tr>
<tr>
<td>Multiple Myeloma</td>
<td>SAO-B (15 of 26)</td>
</tr>
<tr>
<td>Myelodysplastic Syndromes</td>
<td>SAO-B (18 of 26)</td>
</tr>
</tbody>
</table>

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Acute Lymphoblastic Leukemia*

It is strongly recommended that older adults with acute lymphoblastic leukemia (ALL) be treated in a specialized center.

Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

• A randomized study of patients older than 55 years with Philadelphia Chromosome-Positive ALL (Ph+ALL) compared imatinib with chemotherapy as front-line treatment. The study demonstrated that imatinib is well-tolerated with a higher remission rate and comparable overall survival (OS) in comparison to chemotherapy alone.¹

• Phase II studies of adults with Ph+ALL treated with a tyrosine kinase inhibitor (imatinib or dasatinib) with steroids and intrathecal chemotherapy demonstrated a high response rate (100% with complete hematologic remission) and no early deaths.² ³

• A phase II study of patients aged 55 years and older with Ph+ALL of induction chemotherapy followed by imatinib with steroids demonstrated higher complete response (CR) rate and survival than historical studies of chemotherapy alone.⁴

Other Acute Lymphoblastic Leukemia Studies

• Hyper CVAD in older patients with acute lymphoblastic leukemia results in higher CR rates and OS (compared to historical regimens); however, there is a higher risk of myelosuppression-related deaths. Of note, the dose of Ara-C was reduced to 1 gm/m² in patients >60 years.⁵

• A randomized phase II study of pegylated liposomal doxorubicin vs. continuous infusion doxorubicin in patients older than 55 years with acute lymphoblastic leukemia demonstrated no benefit to pegylated liposomal doxorubicin vs. continuous infusion doxorubicin.⁶

• The benefit of adding rituximab to chemotherapy in older adults with Ph(-) CD20-positive ALL has not been demonstrated.⁷

* For comparison of efficacy and toxicity of various targeted therapies between younger and older patients, see Gonsalves W, Ganti AK. Targeted anti-cancer therapy in the elderly. Critical Reviews in Oncology/Hematology 2011;78:227-242.
Increasing age is a poor prognostic indicator in older adults with acute myeloid leukemia (AML). Other poor prognostic indicators are: FLT3 internal tandem duplications, unfavorable cytogenetics, increasing white blood cell count, poorer PS, and presence of secondary AML. Prediction tools are available to assist in counseling older adults regarding the safety and efficacy of standard induction chemotherapy. \(^1\)–\(^4\)

A randomized phase II trial of patients older than 55 years, receiving induction chemotherapy for AML, with ARA-C (100 mg/m\(^2\)/d IV for 7 days) demonstrated no difference in efficacy with the addition of the following anthracycline-containing regimens: daunorubicin 45 mg/m\(^2\)/d IV on days 1-3, mitoxantrone 12 mg/m\(^2\)/d on days 1-3, and idarubicin 12 mg/m\(^2\)/d on days 1-3. \(^5\)

A randomized phase III trial of patients older than 56 years with previously untreated AML demonstrated no difference in CR rate between AD (ARA-C 200 mg/m\(^2\)/d IV continuous infusion on days 1-7 and daunorubicin 45 mg/m\(^2\)/d on days 1-3) and ME (mitoxantrone 10 mg/m\(^2\)/d IV on days 1-5 and etoposide 100 mg/m\(^2\)/d IV on days 1-5); however, poorer OS at 2 years was seen in the ME arm. Therefore, if standard induction chemotherapy (off protocol) is given, an ARA-C-containing regimen should be utilized. \(^6\)

A randomized phase II trial of patients older than 60 years with ARA-C (100 mg/m\(^2\)/d IV for 7 days) demonstrated that higher doses of daunorubicin (90 mg/m\(^2\) vs. 45 mg/m\(^2\) given IV over 3 h days 1-3) was associated with a superior CR rate but no difference in OS; however, a post-hoc analysis showed a potential benefit to the higher dose of daunorubicin in patients older than 65 years, especially in those with CBF-AML. \(^7\)

Standard induction chemotherapy is associated with a 10% to 20% risk of death in patients older than 56 years. The risk of obtaining a CR and the risk of treatment-related mortality (taking age into account) can be calculated utilizing a web-based tool: http://www.aml-score.org/.

DISEASE-SPECIFIC ISSUES RELATED TO AGE

Bladder Cancer

- BCG treatment for superficial bladder carcinoma has decreased efficacy in the very old (older than 80 years).\(^1,2\)
- Age alone should not be a criterion for decisions regarding cystectomy, radiation, and chemotherapy in the elderly.\(^3,4\)
- The improvement in disease-specific survival from neoadjuvant chemotherapy is preserved with age.\(^4\)

See NCCN Guidelines for Bladder Cancer

DISEASE-SPECIFIC ISSUES RELATED TO AGE

Breast Cancer

- Older adults (65 years or older) with breast cancer enrolled in cooperative group trials of adjuvant chemotherapy derive similar benefits (disease-free survival and OS) compared to younger patients. However, older patients have an increased risk of side effects and treatment-related mortality.

- A select group of older adults is enrolled in clinical trials. A review of CALGB studies for node-positive breast cancer demonstrated that only 8% (542/6487) of patients enrolled in cooperative group trials were 65 years and older and only 2% (159/6487) of patients were 70 years or older.

- In the adjuvant treatment of breast cancer, single-agent capecitabine is inferior to cyclophosphamide, methotrexate, and fluorouracil (CMF) or doxorubicin and cyclophosphamide (AC) in patients 65 years or older. Unplanned subset analysis suggested that the greatest difference was seen in women with hormone-receptor-negative tumors.

- Omission of radiation therapy has been associated with a modest increased risk of local recurrence (4% vs. 1% at 5 years; 10% vs. 2% at 10 years); however, there has been no difference in OS or distant metastatic disease. In patients 70 years or older, omission of RT can be considered for patients with stage I estrogen receptor-positive breast cancer who undergo a lumpectomy with negative margins and who are likely to complete 5 years of endocrine therapy.

- Women older than 75 years receive less aggressive treatment and have higher mortality from early-stage breast cancer than younger women.

- In the absence of definitive data demonstrating superior survival from the performance of axillary lymph node dissection, it may be considered optional for the following patients (See NCCN Guidelines for Breast Cancer):
 - patients with particularly favorable tumors
 - patients for whom the selection of adjuvant systemic therapy is unlikely to be affected
 - older patients or for patients with serious comorbid conditions

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
DISEASE-SPECIFIC ISSUES RELATED TO AGE

(References)

Breast Cancer*

*For Comparison of efficacy and toxicity of various targeted therapies between younger and older patients, see Gonsalves W, Ganti AK. Targeted anti-cancer therapy in the elderly. Critical Reviews in Oncology/Hematology 2011;78:227-242.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
DISEASE-SPECIFIC ISSUES RELATED TO AGE

Central Nervous System Cancers*

Glioblastoma

Surgery:
- Patients older than 70 years with glioblastoma who are treated surgically with gross total resection achieve a greater OS than those who are treated with lesser resection. Just as in younger patients, it is difficult to be certain that this is a direct effect of the surgical procedure or a result of selection bias.1,2

Post-Surgical Therapy:
- Postsurgical radiation alone is effective in improving outcomes in patients older than 70 years with glioblastoma, and shorter course regimens are reasonable to consider.3,4
- For anaplastic astrocytomas and glioblastomas in patients older than 64 years, temozolomide alone is non-inferior to radiation alone. Temozolomide alone produces improved event-free survival over radiation alone in tumors with a methylated promoter for the methylguanine methyltransferase gene (in an unplanned subset analysis).5 In patients with glioblastoma who are older than age 70, hypofractionated radiation therapy alone over two weeks OR temozolomide alone each produce an OS benefit compared to standard fractionated radiation therapy over six weeks. This study also confirms the predictive benefit of MGMT promoter methylation status with temozolomide use.6
- The addition of temozolomide concurrently with radiation therapy followed by at least 6 months of adjuvant temozolomide improves survival in patients between 60 and 70 years of age.7 Concurrent chemotherapy with radiation for patients older than 70 years with glioblastoma multiforme is of unclear benefit, but is likely to be helpful in “fit” elderly, based on single institution, retrospective data.8

Recurrent Disease:
- In recurrent glioblastoma, bevacizumab likely improves quality of life (and possibly OS) in patients 55 years and older.9

Central Nervous System Lymphoma:
- Patients older than 60 years with primary central nervous system lymphoma should be treated primarily with chemotherapy, saving radiation for salvage therapy.10,11
Central Nervous System Cancers

For Comparison of efficacy and toxicity of various targeted therapies between younger and older patients, see Gonsalves W, Ganti AK. Targeted anti-cancer therapy in the elderly. Critical Reviews in Oncology/Hematology 2011;78:227-242.
DISEASE-SPECIFIC ISSUES RELATED TO AGE

Colon Cancer

Surgery:
• Age alone should not be a contraindication for curative surgery in early-stage colon cancer and in resectable metastatic colon cancer. Careful preoperative planning and non-emergent surgery are more likely to result in optimal outcomes.1-5

Adjuvant Therapy:
• Older adults derive the same relative benefit as younger patients (in terms of disease-free survival and OS) with 5-FU-based therapy for adjuvant treatment. Older adults are at increased risk for hematologic toxicities.6
• The relative benefit from adjuvant treatment is similar across age groups; however, the absolute benefit of chemotherapy may be smaller due to competing causes of death.
• Pooled data from adjuvant studies did not show a benefit in disease-free or OS for the addition of oxaliplatin to 5-FU-based therapy in patients older than 70 years. Other analyses of patients 75 years and older show a limited magnitude of benefit for oxaliplatin over non-oxaliplatin-based regimens. Due to the lack of prospective data, adjuvant, oxaliplatin-based therapy in adults 70 years and older should be considered on an individual basis.7,8,9

Metastatic Disease:
• Older adults derive the same relative benefit as younger patients (in terms of disease-free survival and OS) with 5-FU-based therapy for metastatic treatment. Older adults are at increased risk for hematologic toxicities.10
• Stop-and-go or maintenance monotherapy strategies during combination chemotherapy may be desirable for elderly patients to minimize toxicity.11
• A prospective study evaluated treatment options for patients not eligible for standard combination chemotherapy. The addition of dose-reduced oxaliplatin to 5-FU or capecitabine failed to demonstrate significant improvement in progression-free survival (PFS). The same study showed a higher rate of grade 3 toxicity with capecitabine compared with 5-FU without improvement in quality of life.12
• Retrospective analyses suggest acceptable toxicity profiles with anti-EGFR antibodies in elderly patients, although data are limited. Similar benefits with anti-EGFR antibodies are seen in young and elderly patients.13,14
• Elderly patients derive similar clinical benefit from the use of bevacizumab with chemotherapy in the metastatic setting as younger patients, but have a higher rate of toxicities, mainly arterial thromboembolic events.15,16

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
DISEASE-SPECIFIC ISSUES RELATED TO AGE

(References)

* For Comparison of efficacy and toxicity of various targeted therapies between younger and older patients, see Gonsalves W, Ganti AK. Targeted anti-cancer therapy in the elderly. Critical Reviews in Oncology/Hematology 2011;78:227-242.
DISEASE-SPECIFIC ISSUES RELATED TO AGE

Rectal Cancer

- There are conflicting results from retrospective studies regarding the tolerance to neoadjuvant 5-FU-based chemotherapy and radiation among older patients with locally advanced rectal cancer. However, since the standard of care for locally advanced rectal cancer is neoadjuvant chemotherapy and radiation, medically fit elderly patients should be considered for this treatment approach, or for participation in clinical trials targeting older patients with this disease.\(^1,2\)

- A pooled analysis from 22 clinical trials with over 8,000 rectal cancer patients demonstrated reduction in risk of local recurrence and death from rectal cancer with perioperative radiotherapy regardless of patient age. However, the risk of death from non-cancer-related causes was increased in the older patient population.\(^3\)

- Available data demonstrate that postoperative chemotherapy and radiation in fit elderly patients with stage III rectal cancer improves OS.\(^4\)

- Large retrospective series demonstrate underuse of sphincter-preserving surgeries with increasing age, with a mild increase in postoperative mortality rates among older patients.\(^5-8\)

- The available data regarding rectal cancer in older adults are primarily retrospective in nature, and are mostly evaluated treatment regimens that are not considered the standard of care today. Multidisciplinary evaluation and optimization of comorbidities is important for optimal patient outcomes in rectal cancer management.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Primary Surgical Approach to Localized/Locally Advanced Head and Neck Cancers:

- **Surgery:** Older adults with head and neck cancer appear to have similar efficacy with surgery but higher complication rates, which increase with comorbidities.\(^1\,^2\)
- **Postoperative chemoradiation:** In the adjuvant therapy of resected squamous cell carcinoma of the head and neck (SCCHN), too few patients older than 70 years have been evaluated to support or reject the addition of cisplatin to radiation therapy.\(^3\,^4\)

Definitive Radiation for Localized/Locally Advanced Head and Neck Cancers:

- **Radiation:** Patients older than 70 years with SCCHN who are treated with radiation therapy experience similar OS in comparison to younger patients. Older adults are at increased risk for acute mucosal toxicities; however, there were no significant differences in late toxicities seen in older patients compared to those younger than 70 years (median of 3 years of follow-up).\(^5\)
- **Chemotherapy/Radiation:**
 - Regarding primary therapy for head and neck cancer, there are not enough data in patients older than 70 years to draw firm conclusions regarding a survival advantage of adding concurrent chemotherapy to radiation therapy.\(^6\)
 - Concurrent chemotherapy with radiation and cisplatin improves laryngeal sparing over radiation alone in patients with localized T2 and T3 laryngeal cancer in patients both older and younger than 60 years.\(^7\)
 - Retrospective studies suggest an increase in severe late toxicity with chemotherapy concurrent with radiation therapy in older patients.\(^8\)
 - There is limited evidence for or against the benefit of cetuximab in combination with radiation therapy to treat locally advanced SCCHN in patients older than 64 years.\(^9\) Available evidence in patients older than 64 years does not allow one to draw firm conclusions regarding a survival benefit of adding concurrent cetuximab to radiation.
- **Induction Therapy:** Few patients older than 70 years have been included in induction chemotherapy trials. There are limited data on the efficacy and toxicity of such an approach in this subset of patients.\(^10\,^11\)

Chemotherapy for Recurrent/Metastatic Disease:

- Retrospective studies suggest an increase in toxicity with chemotherapy in older adults with recurrent/metastatic head and neck cancer.\(^12\)
- There is limited evidence for or against the benefit of adding cetuximab to chemotherapy in treating recurrent or metastatic SCCHN in patients older than 64 years.\(^13\)
DISEASE-SPECIFIC ISSUES RELATED TO AGE

(References)

Head and Neck Cancers *

* For Comparison of efficacy and toxicity of various targeted therapies between younger and older patients, see Gonsalves W, Ganti AK. Targeted anti-cancer therapy in the elderly. Critical Reviews in Oncology/Hematology 2011;78:227-242.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Kidney Cancer

* Sorafenib and sunitinib have similar efficacy in younger and older patients. Some adverse events, including fatigue, occur with increased frequency in older patients.¹²,⁵,⁶,⁸,⁹

* Everolimus has similar efficacy in older and younger adults; however, older adults are at increased risk for adverse events (most commonly stomatitis, anemia, and infection). The frequency of grade 3/4 for adverse events is low.⁴

* Interferon is not recommended for first-line treatment. It has increased toxicity in patients 65 years or older compared to temsirolimus, including asthenia, nausea, fever, and neutropenia.³,⁵,⁷

* For Comparison of efficacy and toxicity of various targeted therapies between younger and older patients, see Gonsalves W, Ganti AK. Targeted anti-cancer therapy in the elderly. Critical Reviews in Oncology/Hematology 2011;78:227-242.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Multiple Myeloma

Initial Therapy:
- Choice of treatment depends on the side effect profile but also the ability to travel for IV therapy. Initial evaluation should determine whether the patient is potentially a candidate for high-dose therapy and autologous stem cell transplantation, as melphalan should be avoided in transplant candidates. There is a lack of consensus on what constitutes transplant eligibility; determining whether a patient is eligible for transplant incorporates assessment of physiologic age rather than chronologic age, with attention to comorbidities, functional status, and adequate cardiac, pulmonary, renal, and hepatic function. Consider early referral to a transplant physician if uncertain whether the patient is transplant-eligible prior to exposure to alkylating agents. For more information regarding transplant eligibility, go to http://www.cms.gov/.

Immunomodulator-Based Initial Therapy:
- Older adults with multiple myeloma receiving MPT (melphalan, prednisone, and thalidomide) in comparison to MP (melphalan and prednisone) had a higher response rate at the cost of increased toxicity (constipation, fatigue, increased venous thromboembolism [VTE], neuropathy, cytopenias, and infection).1-9
- A survival benefit has been seen with MPT compared with MP, although studies are conflicting and varying doses of thalidomide have been used.1-9
- MPT is associated with higher response rate and OS than transplant with intermediate-dose melphalan (MEL 100).2
- Melphalan, prednisone, and lenalidomide followed by lenalidomide maintenance (MPR-R) significantly prolonged PFS in patients 65 years or older with newly diagnosed multiple myeloma who were ineligible for transplantation. The greatest PFS benefit was observed in patients 65 to 75 years of age.10

Venous Thromboembolism (VTE) Prophylaxis:
- In elderly patients receiving immunomodulator-based regimen, VTE prophylaxis is recommended.11

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Multiple Myeloma

Bortezomib-Based Initial Therapy:

- VMP (bortezomib, melphalan, and prednisone) in comparison to MP is associated with an increased response rate and OS at the cost of increased toxicity (ie, peripheral neuropathy, cytopenias, fatigue). The survival benefit is maintained across age groups.\(^{12,13}\)
- VMP vs. VTP (bortezomib, thalidomide, and prednisone) have similar response rates and OS but differing side effect profiles (VMP [ie, hematologic toxicity, infection] and VTP [cardiac complications]). Rates of neuropathy were similar in both groups.\(^{14}\)
- VMPT (bortezomib, melphalan, prednisone, and thalidomide) followed by maintenance VT (bortezomib and thalidomide) vs. VMP is associated with a higher response rate but does not improve OS. Weekly bortezomib is associated with a decreased rate of peripheral neuropathy without a decrement in response.\(^{15}\) An updated analysis (with a median follow-up of 47.2 months) showed that VMPT-VT regimen significantly prolonged OS compared to VMP, especially in patients younger than 75 years.\(^{16}\)

High-Dose Dexamethasone is Excessively Toxic in Older Adults:

- High-dose dexamethasone is associated with an increased risk of mortality and severe hematologic toxicities in comparison to MP.\(^{17}\)
- Lenalidomide plus low-dose dexamethasone (in comparison to lenalidomide plus high-dose dexamethasone) is associated with an improvement in OS and lower toxicity (less DVT and fatigue and fewer infections).\(^{18}\)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
DISEASE-SPECIFIC ISSUES RELATED TO AGE

(References)

Multiple Myeloma

*For Comparison of efficacy and toxicity of various targeted therapies between younger and older patients, see Gonsalves W, Ganti AK. Targeted anti-cancer therapy in the elderly. Critical Reviews in Oncology/Hematology 2011;78:227-242.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Azacytidine is the standard of care in patients with higher-risk MDS with improvement in OS, time to AML transformation, and quality of life, as well as decreased transfusion dependence. Subgroup analysis demonstrated similar benefits, with no increased risk of toxicity in patients ≥ age 65 and ≥ age 75. Predictors of a better response include a bone marrow blast count <15%, a normal karyotype, and no previous treatment with low-dose cytosine arabinoside.\(^1\)\(^-\)\(^3\)

The standard of care for patients with higher-risk MDS is azacytidine given 7 days in a row; however, this may be challenging due to logistic or transportation problems. A phase II study evaluating patients ≥ age 65 showed that the 5+2+2 (5 days on, 2 days off, 2 days on) schedule did not seem to negatively impact the response rate or duration of response. A 5-day schedule is not recommended for these patients.\(^1\)\(^,\)\(^4\)

Two large studies have evaluated the 5-day decitabine regimen for treatment of lower- and higher-risk MDS patients, in a predominantly elderly patient population.\(^5\)\(^,\)\(^6\) Substantial responses and hematologic improvements were demonstrated, with median survivals of 20 months in both studies. These results are comparable to those reported with azacytidine.

Among patients with higher-risk MDS, decitabine delivered on an inpatient schedule over 3 days is not associated with a survival advantage in comparison to best supportive care.\(^7\)

Lenalidomide can reduce red blood cell (RBC) transfusion requirements in patients with lower-risk MDS with the 5q31 deletion.\(^8\) It can also reverse cytologic and cytogenetic abnormalities in these patients. The drug may reduce RBC transfusion requirements in a subset of other lower-risk MDS patients.\(^9\) Although the median age of patients included in these studies is early 70s, there are little data available regarding the risks and benefits at the extremes of age.\(^8\)\(^,\)\(^9\)

Older age is associated with a lower chance of response to immunosuppression strategies (cyclosporine or antithymocyte globulin [ATG] +/- cyclosporine) in patients with low-risk MDS.\(^10\)
DISEASE-SPECIFIC ISSUES RELATED TO AGE

(References)

Myelodysplastic Syndromes

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Non-Small Cell Lung Cancer^*^

Surgery^1^-^6^
- Few prospective studies exist.
- Retrospective analyses demonstrate that older patients who are selected for surgery tolerate it well.
- There is caution with pneumonectomy in older adults.

Adjuvant Chemotherapy^7^-^8^
- The benefits of adjuvant chemotherapy are similar with age.

Locally Advanced Disease^9^-^13^
- Combined modality therapy: While efficacy is maintained, older adults (especially those with a KPS <90) are more likely to have side effects (ie, esophagitis, pneumonitis, myelosuppression).

Advanced Disease^14^-^24^
- As in younger patients, chemotherapy is associated with improved quality of life in comparison to best supportive care.
- Emerging data are confirming the survival benefit of doublet chemotherapy in comparison to single-agent treatment.
- A retrospective subset analysis of ECOG 4599 and a recent SEER-Medicare analysis both suggest that older patients may not benefit from the addition of bevacizumab to carboplatin-paclitaxel.

Non-Small-Cell Lung Cancer* (continued)

*For Comparison of efficacy and toxicity of various targeted therapies between younger and older patients, see Gonsalves W, Ganti AK. Targeted anti-cancer therapy in the elderly. Critical Reviews in Oncology/Hematology 2011;78:227-242.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Small Cell Lung Cancer

- Available data suggest that older adults derive benefit from standard doses of combination systemic chemotherapy (platinum and etoposide); however, toxicity related to bone marrow suppression is higher.\(^1,2\)
- Attenuated doses of chemotherapy are associated with inferior outcomes and should be avoided if possible.\(^1\)
- Cisplatin and carboplatin appear to have similar efficacy in the first-line treatment of small cell lung cancer. However, toxicity profiles are different, with carboplatin having a higher hematologic toxicity and cisplatin having a higher non-hematologic toxicity.\(^3\)
- Age-related subset analyses of cisplatin + etoposide and concurrent external beam radiation therapy demonstrate similar response rates between older and younger patients, but older adults are at risk for increased toxicity (ie, myelosuppression, esophagitis, pneumonitis) and increased rate of treatment-related deaths (1% vs. 3% in NCCTG; 1% vs. 10% in INT 0096). Despite this, OS appears to be similar in both age groups.\(^4,5\)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
DISEASE-SPECIFIC ISSUES RELATED TO AGE

Ovarian Cancer

Overview:

- There are limited prospective data regarding the treatment of older adults with newly diagnosed ovarian cancer. Four studies from the SEER database and one study from a Geneva registry offer a unique look at older patients diagnosed with ovarian cancer. Women older than 70 years with ovarian cancer had a 3-fold increased risk of death, more aggressive tumors, and more advanced stages at diagnosis, and received less standard chemotherapy and surgery. The 5-year, disease-specific survival was only 18% for women older than 70 years, compared to 53% for the younger cohort.

- Women older than 65 years with ovarian cancer receive less chemotherapy and are less likely to complete a planned course of chemotherapy, particularly if >2 comorbid conditions are present. Predictors of no adjuvant chemotherapy include being older than 70 years, >2 comorbid conditions, and Hispanic race. Age is not significantly associated with hospitalizations or the use of other health services for women who received chemotherapy.

- There are regional variations in the receipt of ovarian cancer-directed surgery and chemotherapy in the United States. A wide range of care is offered to older patients depending on geographic location. Cancer-directed surgery varied from 53% to 83%, and chemotherapy use varied from 48% to 93%. Improving access to high-quality surgery may have the greatest impact on improving outcomes in older patients.

- For women at the end of life, hospice services were received by 60% of women older than 65 years during their last 6 months of life; African-American women and those of lower socioeconomic status are less likely to be offered these palliative services.

Primary Chemotherapy:

- A review (N=620 pts, age ≥70; N=3066 pts, age <70) of women enrolled in the phase III clinical trial of adjuvant combination platinum therapy (GOG 182) reported that age (≥70 years) was associated with lower completion rates of the prescribed 8 cycles of chemotherapy (72% vs. 82%), shorter survival (37 vs. 45 months), and increased toxicity (particularly cytopenias and neuropathy). The analysis calls for more age-specific prospective studies.

- A multicenter prospective study (N=83 pts, age ≥70) of older patients with newly diagnosed stage 3 or 4 ovarian cancer who received a platinum-based regimen demonstrated that geriatric assessment variables identified patients at risk for severe toxicity and poorer OS. ECOG PS ≥2, depression, and loss of autonomy were associated with severe toxicity. Advanced stage, depression, and increased comorbidity were associated with poorer OS.

- A small prospective phase II study (N=26 pts, median age 77) of older patients with a high degree of comorbidity (54% had 2 or more comorbidities) and functional dependence (30% needed assistance with activities of daily living [ADL] and 74% needed assistance with instrumental ADL [IADL]) evaluated the feasibility and toxicity of carboplatin (AUC 2) and paclitaxel (60 mg/m²) given on a weekly schedule. Sixty-five percent of patients completed 6 cycles of therapy with a low overall toxicity rate.

- A very small prospective U.S. phase II study (N=12; median age 82) of older patients receiving standard doses of carboplatin/paclitaxel demonstrated that 50% of patients discontinued therapy before completing the prescribed 6 cycles.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
DISEASE-SPECIFIC ISSUES RELATED TO AGE

Ovarian Cancer

- A retrospective review of a phase III study studying standard doses of cisplatin or carboplatin with paclitaxel every 3 weeks demonstrated that older patients (age ≥70; N=103 [13% of the study population]) had similar toxicity (except for febrile neutropenia; 5% age ≥70 vs. <1% in those age <70), although they also had lower chemotherapy completion rates. The rate of neuropathy and impact on quality of life were not significantly different for older vs. younger patients.10

Intraperitoneal Chemotherapy:

- There are limited data regarding the feasibility of intraperitoneal (IP) chemotherapy in older adults. A retrospective study (109 pts [23 pts (21%) age ≥70]) demonstrated that older adults were less likely to complete the planned number of IP chemotherapy cycles; however, there was no significant association between age and IP chemotherapy toxicity or dose adjustments. Age alone should not limit access to IP chemotherapy.11
- A single-institution, retrospective review (N=100; age ≥65) demonstrated that IP chemotherapy can be safely administered to select older patients with adequate supportive care and dose modifications.12

Prognostic Factors:

- A review of the Gynecologic Oncology Group (GOG) database demonstrated 4 significant adverse prognostic factors for the outcome of patients with stage III ovarian cancer treated with surgery and platinum-taxane chemotherapy. These included: mucinous or clear cell histology, PS >0, macroscopic disease at surgery, and increasing age (HR 1.12 for death). In women older than 70 years of age (14% total), 77% were able to complete all 6 planned cycles of chemotherapy.13
- A prospective review of ovarian cancer therapeutic GOG trials demonstrated that, compared to a younger cohort, patients 65 years and older were less likely to enroll on protocols (26% vs. 35%) due to ineligibility, refusal, or investigator decision. Further efforts to improve enrollment and design age-specific studies at the GOG are underway.14
DISEASE-SPECIFIC ISSUES RELATED TO AGE

Ovarian Cancer References

Prostate Cancer

- For treatment of clinically localized or locally advanced prostate cancer, see the [NCCN Guidelines for Prostate Cancer](#).

- There are no age-related differences in docetaxel efficacy in patients with castration-resistant prostate cancer. Growth factor support should be considered in patients 65 years or older to decrease the risk of neutropenic complications.\(^1,2\) See the [NCCN Guidelines for Myeloid Growth Factors](#).

- There are no age-related differences in cabazitaxel efficacy in patients with castration-resistant prostate cancer. Growth factor support is strongly recommended in patients 65 years or older to decrease the risk of neutropenic complications in the elderly.\(^3,4\) See the [NCCN Guidelines for Myeloid Growth Factors](#).

- Androgen deprivation therapy is associated with an increased risk of fracture. Attention to bone health is warranted.\(^5\) ADT significantly decreases muscle mass, and treatment-related sarcopenia appears to contribute to frailty and increased risk of falls in older men.\(^6,7\) See the [NCCN Guidelines for Prostate Cancer](#).

- In older adults, newer hormonal therapies can potentially replace or delay the usage of cytotoxic chemotherapy and may be used in patients who would otherwise be ineligible for chemotherapy.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
COMPREHENSIVE GERIATRIC ASSESSMENT

Functional status
- Activities of Daily Living (ADL) - Eating, dressing, continence, grooming, transferring, using the bathroom
- Instrumental Activities of Daily Living (IADL) - Using transportation, managing money, taking medications, shopping, preparing meals, doing laundry, doing housework, using the telephone
- Performance status
- Falls
 - In patients who have experienced a fall in the last 6 months or if the patient is “afraid of falling,” consider the following evaluations:
 - Assessment of gait using Timed Up and Go (TUG) test: See SAO-D
 - PT or OT Evaluation
 - Checking and replacing Vitamin D levels
 - Referral to geriatrics or primary care physician
- Gait speed

Socioeconomic issues: See SAO-2
Psychosocial distress: See NCCN Guidelines for Distress Management

Comorbidities
- May affect treatment decisions in 5 ways:
 - Comorbidity may modify cancer behavior.
 - Cancer treatment may interact with comorbidity to impact functional status or worsen comorbidity. This includes any drug-drug interactions.
 - Cancer treatment may be too risky because of the type and severity of comorbidity.
 - Comorbidity may influence life expectancy (independent of the cancer).
 - Comorbidity may affect treatment outcome.

\(^{i}\)See Procedure for Functional Assessment Screening in Elderly Persons (SAO-H).

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
COMPREHENSIVE GERIATRIC ASSESSMENT

Cognitive function (See Assessment of Cognitive Function SAO-E)

- Dementia
 - Mini-Mental State Examination (MMSE)\(^2,3\)
 - Montreal Cognitive Assessment (MoCA)\(^4\) (http://www.mocatest.org/)

- Depression
 - Geriatric Depression Scale (GDS)\(^5,6\)
 - See NCCN Guidelines for Distress Management

- Delirium
 - Confusion Assessment Method and/or Memorial Delirium Assessment Scale\(^7,8\)
 - See NCCN Guidelines for Palliative Care and NCCN Guidelines for Distress Management

Polypharmacy

- Medication review (prescription and over-the-counter medications, vitamins, and supplements) for duplication and appropriate use should be performed at every visit and evaluated for potentially inappropriate medication use.
 - Medication Appropriateness Index\(^9\)
 - Beers Criteria\(^10\)
 - STOPP/START Criteria\(^11,12\)

- Review drug interactions and drug-supplement interactions\(^13\)
 - http://medicine.iupui.edu/clinpharm/ddis/

- Carefully review indications, duration of therapy, and dosage when using these medications or classes of medications\(^14,15\)
 - Benzodiazepines
 - Anticholinergics
 - Antipsychotics
 - Opioids
 - Corticosteroids
 - Antihistamines
 - Oxybutynin
 - Sleep medications
 - Neuroleptics
 - Antidepressants
 - Anticonvulsants
 - Class 1A antiarrhythmics

- Evaluate adherence to therapy (See Assessment of Adherence SAO-F)

Nutritional status

- Body mass index
- Weight loss
- Nutritional deficiency - Mini Nutritional Assessment (MNA)\(^16,17\)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

See References (SAO-C 3 of 3)
Senior Adult Oncology

REFERENCES

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
ASSESSMENT OF GAIT AND TREATMENT RECOMMENDATIONS

Gait should be assessed using the Timed Up and Go (TUG) test.\(^1\)

- The TUG test is calculated as the time in seconds it takes a patient to stand up from a chair (without using his or her arms), walk 10 feet straight ahead, turn back, and return to the chair and sit down. The patient may use an assistive device, such as a cane or walker, but may not have assistance from another person.
- A normal TUG test score is less than 13 seconds. For patients with above-normal TUG test scores, consider comprehensive evaluation as indicated below.

<table>
<thead>
<tr>
<th>ASSESSMENT</th>
<th>TREATMENT RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assess proximal muscle strength</td>
<td>• Diagnose and treat underlying causes</td>
</tr>
<tr>
<td></td>
<td>• Consider physical therapy evaluation</td>
</tr>
<tr>
<td>Check orthostatic blood pressure</td>
<td>• Diagnose and treat underlying causes</td>
</tr>
<tr>
<td></td>
<td>• Review medications</td>
</tr>
<tr>
<td></td>
<td>• Address salt intake, adequate hydration, and compensatory strategies (eg, elevating head of bed, rising slowly, using pressure stockings)</td>
</tr>
<tr>
<td>Ask about changes in vision</td>
<td>• Diagnose and treat underlying cause of vision changes</td>
</tr>
<tr>
<td></td>
<td>• Consider referral to ophthalmologist</td>
</tr>
<tr>
<td></td>
<td>• Consider neurologic evaluation</td>
</tr>
<tr>
<td>Assess for neurological changes</td>
<td>• Evaluate if cancer or cancer treatment-related and modify treatment if possible</td>
</tr>
<tr>
<td></td>
<td>• Consider neurologic evaluation</td>
</tr>
<tr>
<td>Review medications</td>
<td>• See “Polypharmacy” (SAO-C, 2 of 3)</td>
</tr>
<tr>
<td></td>
<td>• Minimize the use of high-risk medications such as: benzodiazepines, sleeping medications, neuroleptics, antidepressants, anticonvulsants, or class 1A antiarrhythmics</td>
</tr>
<tr>
<td>Environmental hazards</td>
<td>• Consider home safety evaluation</td>
</tr>
<tr>
<td></td>
<td>• Educate patients to reduce risk</td>
</tr>
<tr>
<td>Footwear assessment</td>
<td>• Assess type, condition, and fit of shoes</td>
</tr>
<tr>
<td></td>
<td>• Perform foot exam</td>
</tr>
</tbody>
</table>

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Assessment of Cognitive Function

When to Assess for Cognitive Function

<table>
<thead>
<tr>
<th>Question</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would impaired cognitive function affect the planning or delivery of care? (e.g., impact life expectancy or risk/benefit, impact adherence to treatment plan)</td>
<td>No (to all) → Reassess periodically or when considering treatment plan changes</td>
</tr>
<tr>
<td>Is the medical team concerned about decision-making capacity? See SAO-1</td>
<td>Yes (to any) → Consult with a clinician experienced in cognitive evaluation (i.e., geriatrician, neurologist, geriatric psychiatrist, neuropsychologist) OR Initiate the evaluation yourself</td>
</tr>
<tr>
<td>Does the medical team suspect impaired cognitive function?</td>
<td></td>
</tr>
<tr>
<td>Has the patient or patient’s family suggested that the patient has impaired cognitive function?</td>
<td></td>
</tr>
</tbody>
</table>

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
ASSESSMENT OF COGNITIVE FUNCTION

<table>
<thead>
<tr>
<th>Definition</th>
<th>Mild Cognitive Impairment</th>
<th>Dementia</th>
<th>Delirium</th>
</tr>
</thead>
</table>
| **Definition** | An intermediate state between normal cognition and dementia characterized by:
• Subjective memory impairment
• Preserved general cognitive function
• Intact ability to perform daily functions | A progressive condition characterized by:
• Impairment of memory and at least one other cognitive domain (aphasia, apraxia, agnosia, executive function)
• Interference with ability to perform daily functions | Disturbance of consciousness with:
• Reduced ability to focus, sustain, or shift attention
• Onset over a short period of time (usually hours to days)
• Fluctuation during the course of the day |
| **Distinguishing Features** | • Subjective memory complaints and awareness of memory changes
• Preserved function | • Progressive (not sudden) loss of multiple cognitive abilities
• Affects the ability to function independently | • Acute onset
• Waxing and waning attention
• Associated with physiologic disturbances |
| **Differential Diagnosis** | CNS metastases
Psychiatric disease (depression, anxiety, apathy)
Endocrine dysfunction (thyroid)
Metabolic causes (B12 deficiency)
Drug dependency (including alcohol)
Medication related
Sleep disturbance
Common geriatric conditions (pain, infection, constipation) | | |
| **Screening Tool** | Clinical interview with cognitive (Mini-Cog) and functional (ADL/IADL) assessment | Clinical interview with cognitive (Mini-Cog) and functional (ADL/IADL) assessment | Confusion Assessment Method (CAM) |
| **Further evaluation** | • Reassess periodically and with major changes in condition or when considering changes to treatment plan
• Consider consultation with a clinician experienced in cognitive evaluation | • Consult with a clinician experienced in cognitive evaluation and treatment
• Neuropsychological testing may be indicated
• Evaluation: B12, TSH, brain imaging | • Evaluate and treat all potential causes of delirium
• Consider consultation with clinicians experienced in cognitive evaluation and treatment |

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

ASSESSMENT OF ADHERENCE

Assess risk of non-adherence whenever considering a treatment regimen that will include an oral agent

Although older age per se is not a consistent risk factor for non-adherence, several factors may increase the potential for non-adherence among older adults:

- Decreased propensity of older adults to ask questions about benefits and risks of treatments
- Increased numbers of comorbidities and associated medications leading to regimen complexity
- Increased likelihood of side effects adversely affecting comorbidities
- Increased likelihood of prior experience with medication side effects
- Increased likelihood of drug-drug interactions
- Increased likelihood of acquisition barriers, including out-of-pocket costs, mobility/transportation difficulties, and lack of synchronized refill dates
- Increased risk of cognitive impairment

Strategies to minimize non-adherence

When initiating therapy:

- Ask patient to bring in prescribed, over-the-counter medications and supplements to review
- In collaboration with other medical providers, reduce regimen complexity, if possible
- Take into consideration cost of the medication including insurance coverage and out-of-pocket cost
- Consult with pharmacist to synchronize medication refills whenever possible
- Prepare the patient regarding anticipated side effects to avoid inappropriate medication discontinuation
- Ensure that the patient/family understands the benefits/rationale for the medication and the risks of not taking it
- Provide written instructions to patient/caregiver for taking the medication at the sixth grade level. Have patient/caregiver repeat back his/her understanding of how to take the medication, common side effects, and “when to worry” and “what to do if worried”
- Engage family/other caregivers and interdisciplinary team in the process

At each follow-up visit:

- Ask patient to bring in prescribed, over-the-counter medications and supplements to review
- Provide additional cues or reminders (eg, calendars, pill boxes, other reminder techniques)
- Reinforce benefits and ask about side effects: if tolerable, stay the course; if intolerable, select an alternative
- Assess adherence in a non-judgmental way: “How many pills did you take during the past week?” “How did you take them in relation to meals?” (if applicable)
- Ask the patient if there are any barriers to acquiring the medication. Refer to case manager or pharmacist as applicable.

4 Confirm ability to read and comprehend written instructions (vision, literacy, etc).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
The American Geriatrics Society (AGS) provides recommendations for the diagnosis, evaluation, and management of insomnia.

- Benzodiazepines or other sedative-hypnotics should not be used as first-line treatment for insomnia in older adults.\(^a\)
- Non-pharmacologic methods such as cognitive behavioral therapy and lifestyle modifications are preferred.
- Patient should be cautioned that most over-the-counter sleep medications contain antihistamines and should not be used in older adults.
- If pharmacologic therapy is to be utilized, it is recommended for short-term use only with the lowest dose that is effective. The risks and benefits of the therapy should be discussed.\(^b\)

Please note that if zolpidem is considered, the FDA has advised that the recommended dose of zolpidem for women should be lowered from 10 mg to 5 mg for immediate-release products and from 12.5 mg to 6.25 mg for extended-release products.\(^c\)

- Patient information regarding optimizing sleep is available through the National Institute on Aging.\(^d\)

PROCEDURE FOR FUNCTIONAL ASSESSMENT SCREENING IN ELDERLY PERSONS

<table>
<thead>
<tr>
<th>Target Area</th>
<th>Assessment Procedure</th>
<th>Abnormal Result</th>
<th>Suggested Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision</td>
<td>Test each eye with Jaeger card while patient wears corrective lenses (if applicable)</td>
<td>Inability to read >20/40</td>
<td>Refer to ophthalmologist</td>
</tr>
<tr>
<td>Hearing</td>
<td>Whisper a short, easily answered question, such as "What is your name?" in each ear while the examiner’s face is out of direct view.</td>
<td>Inability to answer question</td>
<td>Examine auditory canals for cerumen and clean if necessary. Repeat test; if still abnormal in either ear, refer for audiometry and possible prosthesis.</td>
</tr>
<tr>
<td>Arm</td>
<td>Proximal: "Touch the back of your head with both hands." Distal: "Pick up the spoon."</td>
<td>Inability to do task</td>
<td>Examine the arm fully (muscle, joint, and nerve) paying attention to pain, weakness, and limited range of motion. Consider referral for physical therapy and occupational therapy.</td>
</tr>
<tr>
<td>Leg</td>
<td>Observe the patient after asking "Rise from your chair, walk 10 ft, return, and sit down."</td>
<td>Inability to walk or transfer out of chair</td>
<td>Do full neurologic and musculoskeletal evaluation, paying attention to strength, pain, range of motion, balance, and traditional assessment of gait. Consider referral for physical therapy and occupational therapy.</td>
</tr>
<tr>
<td>Urinary incontinence</td>
<td>Ask patient: "Do you ever lose your urine and get wet?"</td>
<td>Yes</td>
<td>Ascertain frequency and amount. Search for remediable causes including local irritations, polyuric states, and medications. Consider urologic referral.</td>
</tr>
<tr>
<td>Nutrition</td>
<td>Weigh the patient. Measure height.</td>
<td>Weight is below acceptable range for height</td>
<td>Do appropriate medical evaluation. Consider dietician referral.</td>
</tr>
<tr>
<td>Mental status</td>
<td>Tell the patient: "I am going to name three objects (pencil, truck, book). I will ask you to repeat their names now and then again a few minutes from now."</td>
<td>Inability to recall all 3 objects after 1 min</td>
<td>Administer Folstein mini-mental status examination. If score is <24, search for causes of cognitive impairment. Ascertain onset, duration, and fluctuation of overt symptoms. Review medications. Assess consciousness and affect. Do appropriate laboratory tests.</td>
</tr>
<tr>
<td>Depression</td>
<td>Ask patient: "Do you often feel sad or depressed?"</td>
<td>Yes</td>
<td>Administer Geriatric Depression Scale. If positive (normal score, 0 to 10), check for antihypertensive, psychotropic, or other pertinent medications. Consider appropriate pharmaceutical or psychiatric treatment.</td>
</tr>
<tr>
<td>ADL-IADL</td>
<td>Ask patient: "Can you get out of bed yourself?"; “Can you dress yourself?”; “Can you make your own meals?”; “Can you do your own shopping?”</td>
<td>No to any question</td>
<td>Corroborate responses with patient's appearance; question family members if accuracy is uncertain. Determine reasons for the inability (motivation compared with physical limitation). Institute appropriate medical, social, or environmental interventions.</td>
</tr>
<tr>
<td>Home environment</td>
<td>Ask patient: "Do you have trouble with stairs inside or outside of your home?"; ask about potential hazards inside the home with bathtubs, rugs, or lighting.</td>
<td>Yes</td>
<td>Evaluate home safety and institute appropriate countermeasures.</td>
</tr>
<tr>
<td>Social support</td>
<td>Ask patient: "Who would be able to help you in case of illness or emergency?"</td>
<td>...</td>
<td>List identified persons in the medical record. Become familiar with available resources for the elderly in the community. Consider social worker referral.</td>
</tr>
</tbody>
</table>

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

1. Adapted with permission from Lachs MS, Feinstein AR, Cooney LM Jr, et al. A simple procedure for general screening for functional disability in elderly patients. Ann Intern Med 1990;112:699-706. This test is similar to the "Timed Up and Go" (TUG) test, except that the TUG test is calculated as the time in seconds it takes a patient to stand up from a chair (without using his or her arms), walk 10 feet straight ahead, turn back, and return to the chair and sit down. The patient may use an assistive device, such as a cane or walker, but may not have assistance from another person. A normal TUG test score is less than 13 seconds. This test is also referred to as the "three-item recall." It can be supplemented by the clock drawing test to assist in assessment for dementia.
Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Table of Contents

Overview ... MS-2
Comprehensive Geriatric Assessment.. MS-2
 Functional Status .. MS-3
 Comorbidities .. MS-4
 Polypharmacy .. MS-5
 Nutritional Status .. MS-7
 Cognitive Function ... MS-7
 Socioeconomic Issues ... MS-7
 Geriatric Syndromes ... MS-8
Application of CGA for Patients with Cancer......................... MS-12
Approach to Decision Making in Older Cancer Patients MS-13
Surgery .. MS-14
Radiation Therapy ... MS-15
Chemotherapy .. MS-15
Side Effects of Chemotherapy .. MS-16
Targeted Therapy ... MS-21
Adherence to Therapy .. MS-21
Disease-Specific Issues ... MS-23
 Breast Cancer ... MS-23
 Central Nervous System Cancers ... MS-24
 Gastrointestinal Cancers ... MS-26
 Genitourinary Cancers ... MS-28
 Gynecologic Cancers ... MS-30
 Head and Neck Cancers .. MS-31
 Lung Cancers ... MS-32
 Hematologic Malignancies ... MS-34
Summary ... MS-40
References .. MS-42
Overview

Cancer is the leading cause of death in women and men aged 60 to 79 years. More than 50% of all cancers and more than 70% of cancer-related deaths in the United States occur in patients who are 65 years or older. It is estimated that by 2030 approximately 70% of all cancers will be diagnosed in adults aged 65 years or older. Older adults are more prone to develop cancer than younger adults. Furthermore, aging in the U.S. population and increased life expectancy mean that cancer in older adults is becoming an increasingly common problem.

There are unique issues to consider when caring for an older adult with cancer. The biology of certain neoplasms and responsiveness to therapy changes with the patient’s age. Furthermore, the patient’s physiologic status, comorbidities, and preferences may influence the selection and tolerance to certain therapies. Together, these age-related issues form the basis for the development of guidelines that address special considerations in older patients with cancer.

Older patients with cancer are under-represented in clinical trials for new cancer therapies. Therefore, there are less evidence-based data to guide the treatment of these patients. However, advanced age alone should not preclude the use of effective cancer treatment that could improve quality of life or extend meaningful survival. Treatment that diminishes quality of life with no significant survival benefit should be avoided. The available data suggest that older patients with good performance status are able to tolerate commonly used chemotherapy regimens as well as younger patients, particularly when adequate supportive care is provided. However, there have been few studies that have addressed patients at the extremes of age or those with poor performance status. The physiologic changes associated with aging may impact an older adult’s ability to tolerate cancer therapy and should be considered in the treatment decision-making process.

Proper selection of patients is the key to administering effective and safe cancer treatment. The challenge of managing the older patients with cancer is to assess whether the expected benefits of treatment are superior to the risk in a population with decreased life expectancy and decreased tolerance to stress. The NCCN Guidelines for Senior Adult Oncology address specific issues related to the management of cancer in older adults, including screening and comprehensive geriatric assessment (CGA), assessing the risks and benefits of treatment, preventing or decreasing complications from therapy, managing disease-specific issues, and managing patients deemed to be at high risk for toxicity from standard treatment.

Comprehensive Geriatric Assessment

Older patients can be classified into three categories: 1) young old patients are 65 to 75 years of age; 2) old patients are 76 to 85 years of age; and 3) oldest old patients are older than 85 years of age. Chronologic age by itself is not reliable in estimating life expectancy, functional reserve, or the risk of treatment complications. While it is not possible for a physician to predict the exact life expectancy of an individual patient, it is possible to provide an estimate of whether a patient is likely to live longer or shorter than an average person of similar age.

Life expectancy at a given age can be estimated using life table data as suggested by Walter and Covinsky. For example, about 25% of the healthiest 75-year-old women will live more than 17 years, 50% will live at least 12 years, and 25% will live less than 7 years. Lee and colleagues developed and validated a potentially useful tool for
clinicians to estimate the 4-year mortality risk.14 Patients can be stratified into three groups of varying risk of mortality (high, intermediate, or low) based on the prognostic index, which incorporates demographic variables (age and sex), self-reported comorbid conditions, and functional measures.14 Carey and colleagues also developed a similar functional morbidity index based on self-reported functional status, age, and gender to stratify elders into varying risk groups for 2-year mortality.13

CGA is a multidisciplinary, in-depth evaluation to assess life expectancy and risk of morbidity and mortality in older patients.18-20 CGA includes assessment tools to predict the functional age of older patients with cancer based on functional status, comorbidities that may interfere with cancer treatment, polypharmacy, nutritional status, cognitive function, psychological status, socioeconomic issues, and geriatric syndromes.

Functional Status

Functional status in older patients with cancer can be evaluated using self-reported or performance-based measures. Self-reported measures include the individual's ability to complete activities of daily living (ADLs) and instrumental activities of daily living (IADLs).21,22 ADLs encompass basic self-care skills required to maintain independence at home and IADLs encompass complex skills that are necessary for maintaining independence in the community. The need for assistance with IADLs has been associated with decreased treatment tolerance and poorer survival in older patients with cancer.23-26 Physical performance-based measures such as gait speed (also known as walking speed) and the Timed Up and Go (TUG) test are also used to assess functional status in older patients.

Gait speed has been used to assess functional status and health outcomes in older adults.17,27 Recent reports have also identified gait speed as an indicator of survival and mortality in older adults.15,16 In a pooled analysis of individual data from 9 large cohort studies that included more than 30,000 participants (65 years or older) living in the community, Studenski et al reported that gait speed was associated with survival in older adults.15 In this analysis, with 0.8 meter/second as the cutoff, gait speed faster than 1.0 meter/second suggested a better-than-average life expectancy and gait speed above 1.2 meters/second suggested exceptional life expectancy. White et al reported that decline in gait speed (slow, moderate, and fast) could predict mortality in well-functioning older adults. A fast decline in gait speed was associated with a 90\% greater risk of mortality than a slow decline.16 The predictive value of gait speed has also been evaluated in older patients with cancer.28 In the Health, Ageing and Body Composition study that included 429 older patients with cancer, faster gait speed (time taken to cover a 20-m course) was associated with metastatic cancer and lower 2-year progression to death or disability in patients with non-metastatic cancer.28 Gait speed could be helpful in identifying older patients with a longer expected life expectancy and who may be candidates for preventive interventions that are associated with long-term benefit.

The TUG test is a quick screening test to assess mobility and overall motor function in older adults.29,30 The TUG test score is calculated as the time in seconds it takes a patient to get up from an armchair without using his or her arms, walk 10 feet forward at his or her usual pace, turn around, walk back to the chair, and then sit down again. The patient may use an assistive device, such as a cane or walker, but may not have assistance from another person. The TUG test score has been shown to predict the risk of falls in older adults.31,32 In a preliminary prospective study, the TUG test was also associated with
good sensitivity and specificity in the assessment of falls in older patients with cancer.32

Comorbidities

Older adults have an increased prevalence of comorbidities which can impact cancer prognosis and treatment tolerance.33,34 Cardiovascular problems including congestive heart failure (CHF), diabetes, renal insufficiency, dementia, depression, anemia, chronic infections, osteoporosis, decubitus or pressure ulcers, and prior cancer diagnosis and treatment are some of the frequently encountered comorbid conditions in older patients with cancer.

Specific comorbidities have been shown to have an impact on prognosis and treatment outcome in patients with cancer.35,36,37 For example, in a series of 5077 men (median age, 69.5 years) with localized or locally advanced prostate cancer, neoadjuvant hormonal therapy was significantly associated with an increased risk of all-cause mortality (26.3\% vs. 11.2\%) among men with a history of coronary artery disease, CHF, or myocardial infarction after a median follow-up of 5.1 years.35 In a randomized adjuvant chemotherapy trial of 3,759 patients with high-risk stage II and stage III colon cancer, patients with diabetes mellitus experienced a significantly higher rate of overall mortality and cancer recurrence. At 5 years, the disease-free survival (DFS; 48\% vs. 59\%), overall survival (OS; 57\% vs. 66\%), and relapse-free survival (RFS; 56\% vs 64\%) were significantly worse for patients with diabetes compared with patients without diabetes.36 In the SEER-Medicare database analysis of older patients (66 years or older) diagnosed with stages I-III breast cancer, those with diabetes had an increased rate of hospitalizations for any chemotherapy toxicity and higher all-cause mortality.37

In older patients with cancer, comorbidity may modify the disease course. The interaction of cancer treatment with comorbidity may impact functional status or worsen the comorbidity. Cancer treatment may be too risky due to the type and severity of comorbidity. Furthermore, comorbidity may influence the life expectancy (independent of cancer). The effect of comorbidity on life expectancy should be evaluated prior to initiation of treatment.

The number and severity of comorbidities could be assessed with any of the following indices commonly used to determine the risk of mortality associated with comorbidity in older patients: adult comorbidity evaluation-27 (ACE-27) index,38 the Charlson Comorbidity Index (CCI),39 the Cumulative Illness Rating Scale (CIRS),40 and the OARS Multidimensional Functional Assessment Questionnaire.41 ACE-27,42,43 CCI,44-46 and CIRS47,48 have also been used to determine treatment tolerance in older patients with cancer. In a study of 310 older patients (70 years or older) with head and neck cancer, comorbidity as measured by the ACE-27 index was an indicator of OS.49 In a randomized trial that compared vinorelbine alone or in combination with gemcitabine in older patients with locally advanced non-small cell lung cancer (NSCLC), a CCI of greater than 2 was associated with a higher risk of early treatment suspension (82\% vs. 30\%, respectively).44 In a phase III trial comparing platinum-doublet therapy as first-line treatment in patients with advanced stage NSCLC, patients with severe comorbidities (as measured by CIRS) benefited from and tolerated platinum-doublet chemotherapy as well as patients with no comorbidities.47 However, the former group had a higher risk of neutropenic fever and death from neutropenic infections.

More generally, a useful collection of tools to estimate the general mortality risk in the older adult can be found online at www.eprognosis.org. Life expectancy calculators available at this...
website could be utilized to determine anticipated life expectancy (independent of the cancer) and in clinical decision-making to assess whether the cancer is likely to shorten the patient's life expectancy or whether the patient is likely to become symptomatic from cancer during the anticipated life expectancy. These calculators should be used in conjunction with clinical judgment.

Polypharmacy

Polypharmacy can be defined in various ways, including the use of increased number of medications (5 or more), more than is clinically indicated; the use of potentially inappropriate medications; medication underuse; and medication duplication. Although polypharmacy can be an issue across all age groups, it can be a more serious problem in older patients due to the presence of increased comorbid conditions treated with one or more drugs. In this patient population, the use of drugs for the management of cancer-related symptoms or side effects can result in polypharmacy.

The use of multiple medications can lead to increased incidences of adverse drug reactions (which can lead to functional decline and geriatric syndromes), drug-drug interactions, and non-adherence. Among patients with cancer receiving systemic anticancer therapy for solid tumors, one or more drug-drug interactions were observed in 27% of patients, which increased to 31% among cancer patients receiving palliative care only. Older patients, those with comorbid conditions, brain tumor patients, and those taking many medications are at greater risk of drug interactions.

Alterations in pharmacokinetics and pharmacodynamics of drug metabolism in the older population can also contribute to adverse drug interactions. Most of the commonly prescribed medications such as opioids, antidepressants, antibiotics, and antipsychotics as well as anticancer drugs induce or inhibit cytochrome P-450 enzymes. In a retrospective analysis, Popa et al assessed the impact of polypharmacy on toxicity from chemotherapy in 290 older patients (70 years or older). The results of this study demonstrated that cytochrome P-450 inhibition may contribute to non-hematologic toxicities whereas hematologic toxicities may be associated with protein-binding interactions. The role of protein binding and cytochrome P-450 inhibition should be further explored.

The use of one or more potentially inappropriate medications among older patients has also been documented in several studies. In one study, the use of inappropriate medications increased from 29% to 48% among cancer patients in the palliative care setting. In a more recent study of 500 older patients with cancer (65 years or older) starting a new chemotherapy regimen, polypharmacy (5 or more drugs) was observed in 48% of patients and the use of potentially inappropriate medications was seen in 11% to 18% of patients. While polypharmacy did not increase the risk of chemotherapy-related toxicity in this cohort, it was associated with a higher frequency of hospitalization and early discontinuation of chemotherapy.

Evaluation of Polypharmacy

The guidelines recommend medication review (prescription and over-the-counter medications, vitamins, and supplements) for duplication and appropriate use should be done at every visit. Beers criteria and the Medication appropriateness index (MAI) are two of the most common approaches used to evaluate potentially inappropriate medication use in older patients. The screening tool of older persons' prescriptions (STOPP) and the screening tool to alert doctors to right treatment (START) criteria have been recently developed to evaluate drug interactions, medication duplication, and medication underuse.
Beers Criteria

The Beers' Criteria identify inappropriate medications that have potential risks that outweigh potential benefits based on the risk of toxicity and the presence of potential drug-disease interaction in older patients with cancer.62,63 The criteria are appropriate for persons older than 65 years of age and provide a rating of severity for adverse outcomes as well as a descriptive summary of the prescribing information associated with the medication. The updated 2003 Beers Criteria have been used to evaluate polypharmacy in older patients with cancer both in an oncology-specific acute care unit (oncology-acute care for elders [OACE]; n = 47 with a median age 73.5 years) and in the outpatient setting (n = 154 with a median age 74 years).64,65 The Beers Criteria-based polypharmacy was observed in 21% and 11% of patients, respectively. Both of these studies had implemented medication review and pharmacist-based interventions to improve the appropriateness of prescribing. In the OACE study, 53% had a subsequent alteration in their medication regimen and 28% had a potentially inappropriate medication discontinued, after implementation of recommendation by the OACE team.64 In the outpatient study, 50% of patients required specific interventions and the use of potentially inappropriate medication was identified in 11% of patients, following geriatric management evaluation.65

The Beers' Criteria were recently updated by the American Geriatrics Society (AGS) in 2012 to improve monitoring of drug use, e-prescribing, interventions to decrease adverse events in older adults, and patient outcomes.66 In the updated criteria, medications that are used in older adults are divided into three categories: 1) potentially inappropriate medications to avoid in older adults; 2) potentially inappropriate medications to avoid in older adults with certain diseases and syndromes that the listed drugs can exacerbate; and 3) medications to be used with caution in older adults.

Medication Appropriateness Index

MAI was developed to measure appropriate prescribing based on a 10-item list and a 3-point rating scale.67 Samsa and colleagues subsequently modified the MAI to include a single summated MAI score per medication that demonstrated acceptable reliability in assessing medication appropriateness among 1644 medications prescribed to 208 older veterans from the same clinic.58 This modified MAI appears to be a valid and relatively reliable measure to detect medication appropriateness and inappropriateness in the community pharmacy setting as well as in ambulatory older patients on multiple medications.69,70 MAI scores were significantly lower for medications with a high potential for adverse effects compared with those with a low potential (1.8 vs. 2.9).69 Higher MAI scores were also associated with lower self-related health scores in older adults.71 MAI has not been evaluated extensively in older patients with cancer.

STOPP/START Criteria

STOPP/START criteria were established using the Delphi consensus process by an 18-member expert panel from the academic centers of Ireland and the United Kingdom.72 The STOPP criteria is comprised of 65 indicators for potentially inappropriate prescribing, including drug–drug and drug-disease interactions, therapeutic duplication, and drugs that increase the risks of geriatric syndromes, whereas the START criteria incorporate 22 evidence-based indicators to identify prescribing omissions in older people.73,74 In a randomized trial of 400 hospitalized patients (65 years or older), unnecessary polypharmacy, the use of drugs at incorrect doses, and potential drug–drug and drug–disease interactions were significantly lower in the group assigned to screening with STOPP/START criteria with recommendations provided to their
attending physicians compared to the control group assigned to routine pharmaceutical care. Significant improvements in prescribing appropriateness were sustained for 6 months after discharge.

Nutritional Status

Nutritional deficiency or malnutrition is a common and serious condition in older patients. While some of the malnutrition is attributed to the underlying illness, in most of the patients it is due to inadequate intake of calories. Mini-Nutritional Assessment (MNA) has been designed and validated to provide a single, rapid assessment of nutritional status in older patients in the outpatient settings. MNA is composed of simple measurements and brief questions that help to identify people at risk for malnutrition before severe changes in weight or albumin levels occur. Rubenstein et al have developed a shortened version of MNA, which also has good diagnostic accuracy. Special attention should also be devoted to Vitamin D deficiency since that may be related to osteoporosis and fractures.

Cognitive Function

Older patients with cancer who are cognitively impaired have an increased risk of functional dependence, higher incidence of depression, and are at greater risk of death. Cognitive function is also predictive of medication nonadherence across diagnoses, regardless of the complexity of regimen. Cognitively impaired patients should be cared for by an experienced multidisciplinary geriatric oncology team along with good supportive care throughout the treatment. In addition, the association between cognitive impairment and the ability to weigh the risks and benefits of cancer treatment decisions needs to be considered.

The use of certain classes of medications (anticholinergics, antipsychotics, benzodiazepines, corticosteroids, and opioids) has also been associated with cognitive impairment in older adults. Antipsychotic drugs are also associated with higher mortality rates in patients with dementia. Hilmer and colleagues have developed a drug burden index, which is a useful evidence-based tool for assessing the effect of medications on the physical and cognitive performance in older adults. Special considerations for over- or under-use, duration of therapy, and dosage should be in place with the use of these classes of medications.

For patients with suspected impaired cognitive function that could potentially interfere with their decision-making capacity, the guidelines recommend consultation with a clinician experienced in cognitive evaluation (geriatrician, neurologist, geriatric psychiatrist, or neuropsychologist) or initiation of further evaluation to determine the appropriate diagnosis (eg, mild cognitive impairment, dementia, delirium). In addition to the clinical observation by the medical team, any concerns reported by the patient or the patient’s family suggestive of an impaired cognitive function should also trigger further evaluation. The NCCN Guidelines recommend periodic reassessment of cognitive function or when considering changes to treatment plan for all patients including those with no cognitive impairment.

See the section on *Geriatric Syndromes* for the assessment of dementia and delirium in older cancer patients.

Socioeconomic Issues

Social ties have been identified as significant predictors of mortality in older adults. In a study of 2,835 women diagnosed with breast cancer, socially isolated women had an elevated risk of mortality after a
diagnosis of breast cancer. An evaluation of social support is an integral part of geriatric assessment. The patient’s treatment goals should be discussed with them. In addition, the patient’s living conditions, presence, and adequacy of caregiver and financial status should also be taken into consideration. Consultation with a social worker should be encouraged. Consultation with a financial expert to discuss the cost and coverage options of treatment would also be beneficial.

Geriatric Syndromes

Dementia, delirium, depression, distress, osteoporosis, falls, fatigue, and frailty are some of the most common syndromes in older patients with cancer. Dementia and delirium are two of the most common causes of cognitive impairment. Older patients with cancer experience a higher prevalence of geriatric syndromes than those without cancer. In an analysis of a national sample of 12,480 community-based elders, 60.3% of patients with cancer reported one or more geriatric syndromes compared with 53.2% of those without cancer. In this cohort, the prevalence of hearing trouble, urinary incontinence, falls, depression, and osteoporosis were significantly higher in patients with cancer than those without cancer.

Dementia

Dementia is a progressive condition characterized by impairment of memory and at least one other cognitive function (such as aphasia, apraxia, agnosia, or executive function) that would interfere with the ability to perform daily functions independently. Dementia is often present in older patients as a comorbid condition. In a SEER database analysis, older patients with colon cancer (67 years or older) and dementia were less likely to receive invasive diagnostic methods or therapies with curative intent. Preexisting dementia was also associated with high mortality, mostly from noncancer causes in patients 68 years or older diagnosed with breast, colon, or prostate cancer. Mild cognitive impairment is an intermediate state between normal cognition and dementia. It is characterized by subjective memory impairment, preserved general cognitive function, and intact ability to perform daily functions.

Blessed Orientation-Memory-Concentration (BOMC) test, Mini-Mental State Exam (MMSE), and the Montreal Cognitive Assessment (MoCA) have been used to screen for cognitive impairment in older adults. BOMC is a 6-item test that has been shown to discriminate among mild, moderate, and severe cognitive deficits. MMSE is an 11-item screening test that quantitatively assesses the severity of cognitive impairment and documents cognitive changes occurring over a period of time. However, MMSE is not adequate for mild cognitive impairment and does not predict future decline. MoCA is a brief screening tool with high sensitivity and specificity for detecting mild cognitive impairment in patients performing in the normal range on the MMSE. MoCA has been shown to be a superior prognostic indicator than the MMSE in patients with brain metastases. In a feasibility study of MoCA in patients with brain metastases, cognitive impairment was detected in 80% of the patients by the MoCA compared with 30% by the MMSE. Among the 28 patients with a normal MMSE, 71% had cognitive impairment according to the MoCA.

Clinical interview with cognitive and functional assessment to screen for mild cognitive impairment or dementia is recommended for all patients, since there is a strong correlation between decline in cognitive status and the loss of functional independence in older adults. The guidelines have included Mini-Cog as a screening tool for the assessment of mild cognitive impairment and dementia in older patients with cancer. Mini-Cog is a 5-point test (consisting of a three-word recall and clock drawing test) used for screening cognitive impairment in the
older population. Assessment of cognitive function can also be confounded by fatigue, depression, anxiety, underlying brain tumors, endocrine dysfunction, nutritional deficiency, alcohol use, and sleep disturbances. Therefore, if dementia is suspected, further evaluation including brain imaging neuropsychological testing and evaluation for vitamin B12 deficiency and thyroid dysfunction may be indicated. For patients with mild cognitive impairment, the guidelines recommend periodic reassessment of cognitive function or when considering changes to treatment plan.

Delirium

Delirium is an acute decline in attention and cognition over a short period of time (usually hours to days) and is characterized by the disturbance of consciousness with reduced ability to focus, sustain, or shift attention. It is an under-recognized problem in older adults and can contribute to poorer clinical outcome, functional decline, and impair communication between the patient and physicians in patients with advanced cancer. Dementia is the leading factor for delirium and about two thirds of cases of delirium occur in older patients with dementia.

Confusion Assessment Method (CAM) is a screening and diagnostic tool based on 4 important features of delirium: acute onset and fluctuating course, inattention, disorganized thinking, and altered level of consciousness. The Memorial Delirium Assessment Scale is a 10-item validated instrument developed for repeated use to quantify the severity of delirium symptoms in patients with advanced cancer. The Nursing Delirium Screening Scale is an observational 5-item scale and has been validated in the oncology inpatient setting and is associated with high sensitivity and specificity.

The Hospital Elder Life Program (HELP) includes interventions for the management of 6 risk factors for delirium (cognitive impairment, sleep deprivation, immobility, dehydration, vision or hearing impairment). In the Yale Delirium Prevention Trial (852 patients), the HELP interventions resulted in a significant reduction in the development of delirium, total number of days with delirium, and the total number of delirium episodes in hospitalized patients 70 years or older.

The NCCN Guidelines have included CAM as a screening tool for delirium. Evaluation and treatment of all potential causes of delirium is recommended for all patients with delirium. Medications that can contribute to delirium should be used with caution in older patients with cancer.

Depression

The Geriatric Depression Scale (GDS) is a reliable and valid tool for screening for depression in older patients with no cognitive impairment and in patients with mild to moderate cognitive impairment. GDS was originally developed by Yesavage and colleagues as a 30-item scale. Recently, shortened versions of GDS have been found to be equally accurate and less time consuming in screening for depression in older adults. Cancer-related fatigue and depression frequently occur together; therefore, patients reporting fatigue should probably be assessed for depression.

Distress

Psychological distress is common among patients with cancer. Hurria and colleagues reported that significant distress was identified in 41% of patients 65 years or older with cancer and poorer physical function was the best predictor of distress. Screening tools have been found to be effective and feasible in reliably identifying distress and the psychosocial needs of patients. The Distress Thermometer (DT)
and the accompanying 36-item problem list is a well-known screening tool, specifically developed for cancer patients by the NCCN Distress Management Panel. The NCCN DT has been validated by several studies in patients with different types of cancer and has revealed good correlation with the more comprehensive Hospital Anxiety and Depression Scale. Patients can quickly fill out this distress assessment tool in the waiting room and the tool can alert the physician to potential problems. This tool identifies whether patients with cancer have problems in five different categories: practical, family, emotional, spiritual/religious, and physical. See the NCCN Guidelines for Distress Management for more information on the use of DT as a screening tool in patients with cancer.

Frailty

Frailty is a biologic syndrome of decreased reserve and resistance to stressors, causing vulnerability to adverse outcomes. Frail patients are at risk for falling, disability, hospitalization, and death. Fried Frailty Criteria and the Balducci Frailty Criteria are the two most common measures used to identify frail patients.

According to Fried Frailty Criteria, frailty is defined as the clinical syndrome with three or more of the following conditions: unintentional weight loss (10 lb or more in the past year), self-reported exhaustion, weakness (grip strength), slow walking speed, and/or low physical activity. In a prospective, observational study of 5317 men and women (65 years and older), frailty status based on these criteria was found to be predictive of incident falls, worsening mobility or ADL function, incidence of hospitalization, and death. Balducci Frailty Criteria are based on the components of CGA (dependence in one or more ADLs, three or more comorbid conditions, and one or more geriatric syndromes). These CGA-frailty criteria have been found to be more useful in identifying frail cancer patients. In a prospective study that compared the Balducci Frailty Criteria and the modified version of Fried Frailty Criteria in 176 patients (aged 70 to 94 years) who underwent elective surgery for colorectal cancer, although both frailty measures were predictive of OS, Balducci Frailty Criteria were more useful than the modified version of Fried Frailty Criteria in predicting postoperative complications.

Fatigue

Cancer-related fatigue is a persistent, subjective sense of tiredness related to cancer or cancer treatment that interferes with usual functioning. In advanced cancer, the prevalence of fatigue is greater than 50% to 70%. In a study that evaluated the prevalence of common symptoms in patients with advanced cancer, fatigue was independently associated with chemotherapy, hemoglobin level, and other symptoms such as pain and depression. Patients perceive fatigue to be one of the most distressing symptoms associated with cancer and its treatment; fatigue is more distressing than pain or nausea and vomiting. In contrast to normal fatigue, cancer-related fatigue is refractory to sleep and rest, perhaps because cancer patients have aberrant sleep patterns. It is reasonable to expect that fatigue may precipitate functional dependence, especially in patients who are already dependent in IADLs.

Multiple factors can contribute to fatigue, including pain, emotional distress, anemia, comorbidities, and/or sleep disturbance; many of them are treatable. Certainly, the best strategy is avoidance of any fatigue that may precipitate functional dependence in older adults. Energy conservation, exercise programs, stress management, sleep therapy, and psychostimulants are some of the interventions that have proved valuable. Screening for fatigue can be done using a brief screening questionnaire that would enable patients to rate the severity
of their fatigue on a scale of 0 (no fatigue) to 10 (worst fatigue). See the NCCN Guidelines for Cancer-Related Fatigue.

Falls

Falls are one of the most common geriatric syndromes. Risk factors include arthritis; depressive symptoms; orthostasis; impairments in muscle strength, cognition, vision, balance, or gait; and the use of four or more prescription medications. The use of inappropriate medications (especially hypnotics, sedatives, antidepressants, long-acting benzodiazepines and other inappropriate psychotropics, and medications with anticholinergic properties) is associated with an increased risk of falls in older adults (65 years or older).

Furthermore, cancer diagnosis (especially in the first 6 months after diagnosis) and chemotherapy are also associated with a high risk of falls. In a prospective study of 185 patients with advanced cancer, more than 50% of patients experienced falls associated with a high risk of physical injury, regardless of age; the incidences of falls were 53% among patients younger than 65 years and 49% among those 65 years or older. Median time to fall was 96 days. In a multivariate analysis, the diagnosis of primary brain tumor or brain metastasis, number of falls in the preceding 3 months, severity of depression, benzodiazepine dose, and cancer-related pain were identified as independent risk factors.

Another recent study also reported that the risk of falls increases with each cycle of chemotherapy and patients treated with taxane-based chemotherapy may be at greater risk of falls than those treated with platinum-based chemotherapy.

The AGS/British Geriatrics Society Clinical Practice Guideline for Prevention of Falls in Older Persons recommend a multifactorial risk assessment followed by multicomponent interventions to address the identified risks and prevent falls in older patients 75 years or older with 2 or more falls in the past 12 months or difficulty with walking or balance or gait difficulties. Recommended interventions include minimizing the number of medications; providing a tailored exercise program to improve strength, balance, gait, and coordination; treating vision impairment (including cataracts); managing postural hypotension, heart rate, and rhythm abnormalities as well as foot and footwear problems; supplementing with vitamin D; modifying the home environment; and providing education and necessary information.

Multifactorial risk assessment and management, exercise, vitamin D supplementation, withdrawal of psychotropic medications, and environmental modifications have been shown to be effective in reducing the risk and/or rate of falls in older patients. The guidelines recommend assessment of history of falls, balance, and gait difficulties for all patients. Assessment of gait using the TUG test, evaluation for physical or occupational therapy, vitamin D supplementation (in patients with low levels of vitamin D), or referral to geriatrics or a primary care physician can be considered for patients who have experienced a fall in the last 6 months or if they are afraid of falling.

Osteoporosis

Osteoporosis and its associated increased risk of fracture is a major risk factor in cancer patients, especially in women receiving chemotherapy or hormonal therapy for breast cancer and in men receiving hormonal therapy for prostate cancer. Osteoporosis can be prevented with appropriate screening, lifestyle interventions, and therapy. The diagnosis of osteoporosis is based on assessment of bone density by a dual energy x-ray absorptiometry (DEXA) scan. Management of bone health has become an integral part of comprehensive cancer care. Older patients should be made aware of the impact of cancer therapies on bone health and should adhere to treatment recommendations for maintaining bone health.
Task Force Report on Bone Health in Cancer Care discusses effective screening and therapeutic options for the management of treatment-related bone loss.\(^{158}\)

Application of CGA for Patients with Cancer

The feasibility of CGA has been demonstrated in older patients with cancer.\(^{134,159,160}\) Balducci and Extermann studied CGA in the older cancer patient including an evaluation of functional status, comorbidity, socioeconomic conditions, cognitive and emotional function, nutritional status, polypharmacy, and geriatric syndromes.\(^{134}\) Ingram et al used a self-administered CGA including demographics, comorbid conditions, functional status, pain, financial well-being, social support, emotional state, spiritual well-being, and quality of life to characterize older cancer patients.\(^{159}\) Repetto et al demonstrated that CGA adds substantial information on the functional assessment of older patients with cancer (65 years or older).\(^{160}\) Among patients with a good performance status, 13% had two or more comorbidities; 9.3% and 37.7% had ADL or IADL limitations, respectively. CGA components (comorbid conditions, functional status, cognitive function, geriatric syndromes, and nutritional status) have been associated with the type of cancer treatment and survival in older patients with cancer.\(^{24-26,161-165}\)

For example, in women 65 years or older diagnosed with stage I-III primary breast cancer, the all-cause and breast-cancer-specific death rate at 5 and 10 years was consistently approximately two times higher in women with 3 or more cancer-specific CGA deficits, regardless of age and stage of disease.\(^{161}\) In another prospective study of 375 consecutive older patients with cancer (ELCAPA study), in a multivariate analysis, a lower ADL score and malnutrition were independently associated with cancer treatment changes.\(^{162}\) In a recent prospective multicenter study of 348 previously untreated cancer patients older than 70 years, Soubeyran et al identified poor nutritional status, impaired mobility, and advanced tumors as risk factors predictive of early death (less than 6 months) after initiation of chemotherapy.\(^{163}\) In a phase III study (FFCD 2001-02), impairment in functional status and cognitive function (as assessed by IADL and MMSE, respectively) were predictive of severe chemotherapy toxicity and hospitalization in older patients with metastatic colorectal cancer.\(^{164}\) Similarly, among older patients receiving induction chemotherapy for AML, OS was significantly shorter for patients with impaired cognitive and physical function.\(^{165}\) CGA has also been reported to be an efficient method to identify older patients with diffuse large B-cell lymphoma (DLBCL) who can benefit from anthracycline-based chemoimmunotherapy.\(^{26,135,166}\)

Although CGA is helpful for physicians to develop a coordinated plan for cancer treatment as well as to guide appropriate interventions to the patient’s problems, it can be time consuming and may not be practical for all patients. Some investigators have developed a brief but comprehensive geriatric assessment specific for older patients with cancer, while others have reported a 2-step approach using frailty screening tools to identify older patients who would benefit from a CGA.\(^{167,168}\)

The Cancer-Specific Geriatric Assessment (CSGA) developed by Hurria and colleagues includes the assessment of older cancer patients across seven domains (functional status, comorbidity, polypharmacy, cognitive function, psychological status, social functioning and support, and nutritional status) using validated measures.\(^{167}\) The feasibility of CSGA was demonstrated in a pilot study of 43 patients with cancer (median age of 74 years), the majority of whom had advanced-stage disease. This brief geriatric assessment is largely self-administered and
can be completed by the majority of older patients without assistance.167 Recent results from the CALGB 360401 study also demonstrated the feasibility of including CSGA in future cooperative group clinical trials.169 A multicenter study involving 500 older patients (median age of 73 years) with cancer also showed that CSGA is useful for predicting treatment-related toxicity in older patients with solid tumors.170

The Senior Adult Oncology Program 2 (SAOP2) screening tool developed by Extermann and colleagues is aimed at identifying older patients who would benefit from a multidisciplinary evaluation by a geriatric oncology team.171 SAOP2 screening tool includes the assessment of older cancer patients across the following domains using validated measures: self-rated health, cognitive function, nutritional status, comorbidity, ECOG performance status, and functional status.

Abbreviated CGA (aCGA),172,173 Barber questionnaire,174 Fried Frailty Criteria,133,175 Geriatric 8 (G-8),176-178 Groningen Frailty Index,173 Triage Risk Screening Tool (TRST),178 Vulnerable Elders Survey (VES-13),177,179-182 and Lachs’ screening test183 have been used to determine if a CGA would be beneficial for older patients with cancer. G-8 and aCGA were developed specifically for older patients with cancer. In a recent systematic review, Hamaker et al assessed the sensitivity and specificity of frailty screening methods that could potentially be useful in the selection of patients for CGA.188 G-8 and TRST had the highest sensitivity (87\% and 92\%, respectively) and aCGA had the highest specificity (97\%) for predicting frailty on CGA. While all of the screening tools included the assessment of functional status, the assessment of other domains such as psychosocial status, nutritional status, comorbidities, and polypharmacy varied widely. For example, aCGA, Fried Frailty Criteria, and the VES-13 had a stronger predictive value for impairment of functional status (ADL and IADL) and G-8 had a strong predictive value for nutritional status, but not for other geriatric conditions. As a result, none of the screening tools were successful in identifying impairments across all of the domains included in CGA. Given the lack of data supporting the efficacy of any one screening tool for predicting outcome of a CGA, it would be beneficial to assess all older patients with a CGA prior to initiation of therapy.

Approach to Decision Making in Older Cancer Patients

The risk of morbidity from cancer is generally established by the stage at diagnosis, the aggressiveness of the tumor, and risk of recurrence and progression. Following initial screening and CGA, patients with a low risk of dying or suffering from cancer during their lifetime can receive symptom management and supportive care as detailed in the appropriate NCCN Guidelines for Supportive Care. Patients in the moderate or high-risk group can be further evaluated to assess their functional dependency, decision-making capacity, overall goals, and desire for proposed treatment.184,185

A patient’s decision-making capacity is generally evaluated based on the patient’s ability to understand the relevant information about the diagnosis and proposed diagnostic tests or treatment; appreciate his or her underlying values and current medical situation; use reason to make a decision; and communicate his or her choice. Sessums et al recently evaluated a variety of instruments used to assess medical decision making capacity in adult patients without any mental illness and concluded that Aid to Capacity Evaluation (ACE) is the best available instrument to assist physicians in making assessments about a patient’s medical decision-making capacity.184 Irrespective of age, a person who is functionally independent without serious comorbidities and has the decision-making capacity should be a good candidate for
most forms of cancer treatment. In patients without decision-making capacity, the guidelines recommend considering consultation from an ethics committee or social worker. Additional information can be obtained from the patient’s proxy, advanced directive, health care power of attorney, or clinician’s documentation.

Functionally independent patients with contraindications to treatment and patients with major functional impairment with or without complex comorbidity should be managed according to the appropriate NCCN Guidelines for Supportive Care. Patients who are dependent in some IADLs, with or without severe comorbidities, are at increased risk of treatment complications. For these patients with intermediate functional impairment who have milder problems (such as dependence in one or more IADLs, milder comorbidity, depression, minor memory disorder, mild dementia, and inadequate caregiver), treatment may still be administered with special individualized precautions.4

The potential benefits of cancer treatment include prolonged survival, maintenance, and improvement of quality of life and function, as well as palliation of symptoms. For patients who are able to tolerate curative treatment, options include surgery, radiation therapy (RT), chemotherapy, and targeted therapies. Symptom management and supportive care as detailed in the appropriate NCCN Guidelines for Supportive Care is recommended for all patients.

Surgery

In general, age is not a primary consideration for surgical risk, although the physiologic status of the patient needs to be assessed. Performance status and comorbidities of the patient are more important factors than the age when considering surgical treatment options for older adults.186 The American College of Surgeons and the American Geriatrics Society (AGS) have provided general guidelines for the preoperative assessment of older patients undergoing surgery. These guidelines could also be applied to older patients with cancer undergoing surgery.119

The Surgical Task Force report from SIOG (International Society of Geriatric Oncology) reported that in many malignancies (breast, gastric, and liver) the surgical outcomes in older patients with cancer were not significantly different from their younger counterparts.187 Preoperative Assessment of Cancer in the Elderly (PACE) was developed to determine the suitability of older patients for surgical intervention.188 PACE incorporates CGA, brief fatigue inventory, performance status, and American Society of Anesthesiologists (ASA) grade. In an international prospective study 460 consecutive older patients completed PACE prior to surgery.189,190 In a multivariate analysis, moderate-to-severe fatigue, a dependent IADL, and an abnormal performance status were identified as the most important independent predictors of postoperative complications. Disability assessed by ADLs, IADLs, and performance status were associated with an extended hospital stay.

Patients should be made aware that emergency surgery carries increased risk of complications. Following surgery, physical and/or occupational therapy should be considered to expedite the patient’s return to their preoperative functional level. Impaired cognitive function is also a risk factor for postoperative complications, prolonged hospital stay, and 6-month overall postoperative morbidity.191,192 Older age is also a risk factor for postoperative delirium. The HELP115,116 and NICE guidelines193 provide recommendations for the management of delirium in hospitalized patients 70 years or older.
Radiation Therapy

RT (external beam RT or brachytherapy) can be offered either in the curative or in the palliative setting. Hypofractionated RT may be an alternative treatment option in patients who are unable to tolerate conventional dose RT. Available data from the literature indicate that RT is highly effective and well tolerated and age is not a limiting factor in older patients with cancer. Concurrent chemoradiation, however, should be used with extreme caution; dose modification of chemotherapy may be necessary to reduce toxic side effects. Nutritional support and pain control for RT-included mucositis are recommended for patients receiving RT.

Chemotherapy

Several retrospective studies have reported that the toxicity of chemotherapy is not more severe or prolonged in persons older than 70 years of age. However, the results of these studies cannot be generalized for the following reasons:

- Only a few patients were 80 years or older; therefore, minimal information is available on the oldest patients.
- The older patients involved in these studies were highly selected by the eligibility criteria of the cooperative group protocols and were not representative of the general older population, because they were probably healthier than most older patients.
- Many of the treatment regimens used in these trials had lower dose intensity than those in current use.

Nevertheless, these studies are important, because they demonstrate that age, by itself, is not a contraindication to cancer chemotherapy. Therefore, patient selection is extremely important to maximize the benefits of adjuvant chemotherapy in older patients with breast cancer, colon cancer, and NSCLC.

Increased age has been associated with changes in the pharmacokinetics and pharmacodynamics of cancer therapy and increased susceptibility of normal tissues to toxic complications. In general, all of these changes increase the risks of chemotherapy. Pharmacodynamic changes of interest include reduced repair of DNA damage and increased risk of toxicity. Pharmacokinetic changes of major concern include decrease in the glomerular filtration rate (GFR) and volume of distribution of hydrophilic drugs. Although the hepatic uptake of drugs and the activity of cytochrome P450 enzymes also decrease with age, the influence of these changes on cancer chemotherapy is not clear. Intestinal absorption may decrease with age, but it does not appear to affect the bioavailability of anticancer agents. The pharmacokinetics of antineoplastic drugs is unpredictable to some extent; thus, drug doses should be adjusted according to the degree of toxicity that develops. However, adequate dosing is necessary to ensure the effectiveness of therapy.

Extermann and colleagues have devised the MAX2 index for estimating the average per-patient risk for toxicity from chemotherapy. In a retrospective analysis, Shayne et al identified advanced age (65 years or older), greater body surface area, comorbidities, anthracycline-based regimens, a 28-day schedule, and febrile neutropenia as independent predictors of reduced dose intensity among patients with early-stage breast cancer receiving adjuvant chemotherapy. In another retrospective analysis of older patients (65 years or older) with invasive breast cancer, the type of adjuvant chemotherapy regimen was a better predictor of toxicity than increased age or comorbidity score. Anthracycline-based regimen resulted in greater grade 3 or 4 toxicity, hospitalization, and/or febrile neutropenia, whereas treatment delays...
due to myelosuppression were more frequent with the cyclophosphamide-containing regimen. Among older patients with ovarian cancer, those receiving standard-dose chemotherapy were more likely to experience cumulative toxicity and delays in therapy.46

Other investigators have developed tools incorporating components of CGA to assess the individual risk of severe toxicity from chemotherapy in older patients.23,170,207 In a study of 83 older patients with advanced ovarian cancer treated with carboplatin and cyclophosphamide, Freyer et al identified comorbidities (symptoms of depression at baseline), functional dependence, and polypharmacy (more than six different medications per day) as independent predictors of severe toxicity and OS.23 Hurria and colleagues have developed a scoring algorithm for predicting chemotherapy toxicity in older patients with cancer.170 The following factors were predictive of grade 3 to 5 chemotherapy toxicity: 1) age 72 or older; 2) cancer type (gastrointestinal or genitourinary); 3) standard dosing of chemotherapy; 4) polychemotherapy; 5) hemoglobin (male: less than 11g/dL; female: less than 10g/dL); 6) creatinine clearance less than 34 mL/min (Jelliffe formula using ideal weight);208 7) hearing impairment described as fair or worse; 8) one or more falls in last 6 months; 9) limited in walking one block; 10) the need for assistance with taking medications; and 11) decreased social activities due to physical or emotional health.170 Extermann et al have developed the chemotherapy risk assessment scale for high-age patients (CRASH) score, which could be useful in predicting significant differences in the risk of severe toxicity in older cancer patients starting a new chemotherapy.207 In this model, diastolic blood pressure, IADL, lactate dehydrogenase, and the type of therapy were the best predictors of hematologic toxicity. Performance status, cognitive function, nutritional status, and the type of therapy were the best predictors of non-hematologic toxicity.

Side Effects of Chemotherapy
In older patients undergoing chemotherapy, the most common complications include myelosuppression resulting in neutropenia, anemia, or thrombocytopenia; mucositis; renal toxicity; cardiac toxicity; and neurotoxicity. Older patients appear to be at special risk for severe and prolonged myelosuppression and mucositis, increased risk for cardiomyopathy, and increased risk for central and peripheral neuropathy. In addition, they are also at risk for infection (with or without neutropenia), dehydration, electrolyte disorders, and malnutrition either as a side effect of the chemotherapy or directly from the tumor. Chemotherapy can also affect cognition, function, balance, vision, hearing, continence, and mood.94 The combination of these complications enhances the risk of delirium and functional dependence. It is essential to detect and correct these complications (that may interfere with treatment) in order to achieve maximum benefit from chemotherapy. Prevention and/or amelioration of some of the common chemotherapy-related complications are discussed below.

Cardiovascular Toxicity
Anthracyclines are associated with increased cardiac toxicity resulting in left ventricular dysfunction (LVD) and CHF.209,210 Other antineoplastic drugs associated with significant cardiovascular complications include alkylating agents, antimetabolites, and microtubule-stabilizing agents. These drugs may have an additional effect on anthracycline-induced cardiovascular toxicity. Risk factors for anthracycline-induced cardiovascular toxicity include an existing or history of heart failure or cardiac dysfunction, hypertension, diabetes and coronary artery disease, older age (independent of comorbidities and performance status), prior treatment with anthracyclines, higher cumulative doses, and short infusion duration.211 Dexrazoxane, an iron chelator, has been shown to reduce anthracycline-induced cardiac toxicity in randomized
clinical trials involving patients with advanced or metastatic breast cancer.212-214

Trastuzumab has also been associated with cardiac dysfunction and CHF in patients with HER-2-positive metastatic breast cancer, especially when used in combination with anthracyclines.215-217 Older age (50 years or more), lower left ventricular ejection fraction (LVEF) and the use antihypertensive medications were identified as risk factors for cardiac dysfunction in patients receiving trastuzumab. However, in the long-term follow-up of the HERA trial the incidence of severe CHF, LVD, and discontinuation of trastuzumab as a result of cardiac disorders remained low (0.8\%, 9.8\%, and 5.1\%, respectively) in patients who received trastuzumab.218 A combined review of cardiac data from the NSABP-31 and NCCTG N9831 clinical trials also showed that the incidence of symptomatic heart failure events was 2.0\% in patients treated with adjuvant trastuzumab and the majority of these patients recovered with appropriate treatment.219

In a recently published, single-center, retrospective analysis of older patients (70 years or older; n = 45) with breast cancer, Serrano et al reported an increased incidence of cardiotoxicity among patients with a history of cardiac disease and/or diabetes treated with trastuzumab.220 Asymptomatic cardiotoxicity was observed in 12.5\% of patients with early-stage breast cancer; 24\% of those with advanced breast cancer and 8.9\% of all patients with advanced breast cancer developed symptomatic CHF.

Emerging data from clinical studies (BCIRG 006 and BCIRG 007) suggest that trastuzumab when used in combination with non-anthracycline-based chemotherapy has similar efficacy with lower rates of cardiac events in patients with early-stage as well as metastatic human epidermal growth factor receptor 2 (HER2)-positive breast cancer.221,222 However, median age of all patients in both of these trials is 50 to 52 years. Additional data are needed regarding the tolerability of these regimens in older patients.

Renal Toxicity
The GFR decreases with age, which in turn delays elimination of many drugs. Delayed renal excretion may enhance the toxicity of drugs whose parent compounds are excreted by the kidneys (ie, carboplatin, oxaliplatin, methotrexate, bleomycin) and drugs that are converted to active (ie, idarubicin, daunorubicin) or toxic metabolites (ie, high-dose cytarabine).4 Dose adjustment to the measured GFR should be considered for these drugs to decrease systemic toxicity.

Renal insufficiency is common in older patients with cancer, particularly in patients receiving nephrotoxic drugs, patients with genitourinary cancers, or patients with multiple myeloma. In patients with preexisting renal problems who are at a greater risk of renal impairment, the use of nephrotoxic drugs should be limited or avoided. The SIOG Task Force provides a number of recommendations for the clinical management of older patients with cancer with renal insufficiency.223 Calculation of creatinine clearance to assess renal function and dose adjustments for GFR to reduce systemic toxicity is recommended for all patients.

Neurotoxicity
Neurotoxicity is also a dose-limiting toxicity associated with chemotherapy.224 Vinca alkaloids, cisplatin, and taxanes induce peripheral neurotoxicity. Methotrexate, cytarabine, and ifosfamide are associated with central neurotoxic side effect. Purine analogs (eg, fludarabine, cladribine, pentostatin) are associated with life-threatening neurotoxicity at significantly higher doses than the recommended clinical dose.225 High-dose cytarabine can cause an acute cerebellar syndrome. Patient’s age (greater than 60 years), drug dose and
schedule, and renal and hepatic dysfunction are the most important risk factors for cytarabine-induced cerebellar toxicity.226,227

Management of neurotoxicity mainly consists of dose reductions or lower dose intensities. Older patients are particularly susceptible to the toxicity of cytarabine-based regimens due to decreased renal excretion of the toxic metabolite ara-uridine, and increased vulnerability of the cerebellum. Particular attention should be paid to the use of cytarabine in high doses, especially in patients with renal insufficiency. Dose reductions are necessary in patients with reduced GFR. The guidelines recommend monitoring for cerebellum function, hearing loss, and peripheral neuropathy. Alternative regimens with non-neurotoxic drugs should be considered, particularly in patients with significant hearing loss.

Myelosuppression

Available data from various studies have shown that the risk of myelosuppression increases substantially by age 65 years.228-233 The risk of myelosuppression is decreased by 50\% when using growth factors.234-236 Dose reductions may compromise the effectiveness of treatment. The use of growth factors in these circumstances does not appear to be associated with increased cost and may even be cost saving if it prevents lengthy hospitalizations from neutropenic infections in older persons.

Neutropenia

Neutropenia is the major dose-limiting toxicity associated with chemotherapy, especially in older patients. Several prospective studies of older patients with large cell lymphoma have shown that older age is a risk factor for neutropenic infections in patients treated with regimens like CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone).236,242 In patients 60 years or older receiving induction or consolidation chemotherapy for acute myeloid leukemia (AML), the prophylactic use of hematopoietic growth factors results in faster recovery of neutrophil and shorter hospitalization, but it does not impact OS.243,244

Meta-analysis of controlled clinical trials on the prophylactic use of recombinant granulocyte colony stimulating factors (G-CSF) has confirmed their effectiveness in reducing the risk of febrile neutropenia.245 Some concerns have been expressed that the combination of growth factors and topoisomerase II inhibitors may be associated with increased risk of acute leukemia; however, these data are controversial.246,247 Despite these caveats, the use of growth factors appears to be the best established strategy to improve treatment in this group of patients.248 The EORTC has issued similar recommendations for the prophylactic use of G-CSF in older patients with cancer.249 The NCCN Guidelines for Myeloid Growth Factors address the use of G-CSFs in patients with solid tumors and non-myeloid malignancies.

Anemia

Anemia has been shown to be a risk factor for chemotherapy-related toxicity and it is one of the factors responsible for reduction in volume of distribution, which may result in increased peak concentration and in increased toxicity of drugs.250 Anemia is also associated with cardiovascular disease, CHF, coronary death, and dementia.251-254

In patients with severe anemia, blood transfusions are necessary to prevent serious clinical consequences. There is increasing controversy regarding the use of erythropoiiesis-stimulating agents (ESAs). ESAs have been demonstrated to decrease the need for transfusion in patients receiving chemotherapy.255 It also appears to be beneficial to complement the administration of erythropoietin with oral or parenteral iron although this is not specific for older patients. However, recent
randomized studies have reported decreased survival and poorer tumor control among cancer patients receiving erythropoietic drugs for correction of anemia and target hemoglobin levels greater than 12 g/dL. The use of ESAs in patients with cancer is also associated with increased risks of venous thromboembolism and mortality. The risks of shortened survival and the disease progression have not been excluded when ESAs are dosed to a target of hemoglobin levels of less than 12 g/dL.

In July 2008 based on the results of these trials, the U.S. Food and Drug Administration (FDA) strengthened its warnings to alert the physicians of increased risk of tumor progression and shortened survival in patients with advanced breast, cervical, head and neck, lymphoid, and NSCLCs. Physicians were advised to use the lowest dose necessary to avoid transfusion. In addition, the use of ESAs is restricted to the treatment of anemia specifically related to myelosuppressive chemotherapy without curative intent. ESAs should be discontinued once the course of chemotherapy has been completed, and the anemia has resolved. The panel recommends that anemia in older patients with cancer should be managed as outlined in the NCCN Guidelines for Cancer and Chemotherapy-Induced Anemia.

Thrombocytopenia
Chemotherapy-induced thrombocytopenia (CIT) is a common hematologic toxicity associated with cytotoxic and myeloablative chemotherapy. Dose reductions and/or interruptions of chemotherapy regimens are necessary in patients with severe thrombocytopenia. While chemotherapy-induced anemia and neutropenia can be managed with hematopoietic growth factors, safe and effective treatment of CIT is still a significant problem. Recombinant interleukin-11 is the only currently approved treatment of CIT in patients with nonmyeloid malignancies. However, it is toxic and of minimal clinical benefit. Ongoing clinical trials are also evaluating the efficacy of thrombopoietin-like agents such as romiplostim and eltrombopag for the treatment of CIT.

Nausea and Vomiting
Chemotherapy-induced nausea and vomiting (CINV) is a debilitating side effect that can significantly affect a patient’s quality of life and compliance with treatment. Serotonin (5-HT₃)-receptor antagonists, neurokinin-1-receptor antagonists, and corticosteroids are the most effective antiemetic drugs used for the management of CINV. Older patients may have an increased risk of toxicity from antiemetic drugs due to age-related physiologic changes in drug absorption, distribution and excretion, drug interactions, and polypharmacy used to treat comorbidities. Therefore, the selection of appropriate antiemetic therapy in older patients should be based on individual patient characteristics, prior history of CINV, the emetogenic potential of the specific chemotherapeutic agent and most importantly the side effect profile of the antiemetic agent. For example, QTc prolongation has been reported as a class effect of 5-HT₃–receptor antagonists, especially dolasetron, tropisetron and palonosetron, and these should be used with caution in older patients with cardiovascular complications. CINV should be managed as described in the NCCN Guidelines for Antiemesis and the NCCN Guidelines for Palliative Care.

Diarrhea
Diarrhea is a well-recognized side effect associated with a number of chemotherapeutic agents, particularly fluorouracil and irinotecan. Loss of fluids and electrolytes associated with persistent and severe diarrhea can lead to dehydration, renal insufficiency, and electrolyte imbalance. Furthermore, chemotherapy-induced diarrhea can lead to dose reductions, delay in therapy, or discontinuation of chemotherapy, which ultimately affect clinical outcomes. Based on the results from
various clinical trials, the ASCO guidelines for the comprehensive evaluation and management of cancer treatment-induced diarrhea recommend loperamide as the standard therapy for mild-to-moderate diarrhea.263 Octreotide (subcutaneous or intravenous if the patient is severely dehydrated) may be beneficial for patients with severe diarrhea or diarrhea that is refractory to loperamide therapy.

The NCCN Guidelines recommend early aggressive rehydration and management with octreotide (if oral treatments are ineffective) for older patients with chemotherapy-induced diarrhea.

\textbf{Mucositis}

Oral and gastrointestinal mucositis are significant complications of radiotherapy and chemotherapy. The risk of mucositis increases with age. In a phase III randomized study of 212 patients with hematologic cancers undergoing high-dose chemotherapy and total body irradiation followed by autologous hematopoietic stem-cell transplant, palifermin (human keratinocyte growth factor) was associated with a significant reduction of oral mucositis compared to placebo (20\% vs. 62\%).265 Palifermin is approved for the treatment of oral mucositis in patients with hematologic malignancies receiving myeloablative therapy requiring hematopoietic stem cell support. Recent studies have reported that palifermin is also well tolerated and effective in the prevention of oral mucositis in patients with metastatic colorectal cancer treated with fluorouracil-based chemotherapy and in patients with head and neck cancer treated with postoperative or definitive chemoradiation therapy.266-268 A new time-released preparation of glutamine has shown promising results in the management of oral mucositis in patients with breast cancer receiving anthracycline-based chemotherapy.269 However, the safety and efficacy of pharmacologic management of chemotherapy-induced oral mucositis in patients with non-hematologic malignancies is yet to be firmly established.

The Multinational Association for Supportive Care in Cancer and the International Society for Oral Oncology has developed guidelines for preventing, evaluating, and treating oral as well as gastrointestinal mucositis.270 The NCCN Task force has also published a comprehensive approach to the management of mucositis in patients with cancer.271 Once mucositis has occurred, patients should be kept well hydrated with intravenous fluids. Early hospitalization may be necessary for patients who develop dysphagia or diarrhea.

\textbf{Insomnia}

Insomnia is characterized by difficulty falling or staying asleep, waking up too early, or experiencing poor-quality nonrestorative sleep associated with daytime impairment (fatigue, poor concentration, daytime sleepiness, or concerns about sleep).272 The incidence of insomnia in patients with cancer has been reported to be three times higher than that reported in the general population and ranges from 25\% to 69\%, depending on the type of cancer.273,274 In a longitudinal study that assessed the prevalence and natural course of insomnia in patients with cancer during an 18-month period, Savard et al reported higher rates of insomnia in patients with breast (42\%–69\%) and gynecologic (33\%–68\%) cancer and lower rates among men with prostate cancer (25\%–39\%).274 Insomnia is more prevalent in older adults, and older patients with cancer should be screened for sleep disturbances prior to the initiation of treatment and at regular intervals during the course of treatment. The AGS has provided recommendations for the diagnosis, evaluation, and management of insomnia in older adults.272 The recently published Pan-Canadian practice guidelines also provide recommendations for the prevention, screening, assessment, and treatment of sleep disturbances in older patients with cancer.275
Cognitive behavioral therapy (CBT) and lifestyle modifications are the preferred first-line treatment options for the management of insomnia in the older patients.272,275 The effectiveness of CBT with multicomponent interventions (stimulus control, sleep restriction, cognitive therapy, sleep hygiene, and fatigue management) for the management of insomnia in patients with cancer has been demonstrated in randomized clinical trials.276-279 Adherence to CBT has been shown to yield greater sleep improvements among women following primary treatment for breast cancer.280

Pharmacologic therapy may be necessary for some patients until CBT takes effect.272,275 Benzodiazepines, non-benzodiazepines, and melatonin-receptor agonists are the FDA-approved classes of drugs for the treatment of insomnia.281,282 However, due to some of the severe adverse effects associated with these benzodiazepines and non-benzodiazepines (e.g., impaired postural stability, fractures, cognitive impairment),281 these drugs are not recommended as first-line therapy for the treatment of insomnia in older adults.272,275 If pharmacologic therapy is to be utilized, it is recommended only for short-term use, with the lowest dose that is safe and effective to address the particular type of sleep disturbance in an individual patient.

Targeted Therapy

The emergence of targeted therapies (monoclonal antibodies and small molecules targeted against specific molecular pathways required for the development of a particular malignancy) has significantly improved outcomes in a variety of malignancies. The use of targeted therapies in older patients appears to be promising in view of their better efficacy and toxicity than conventional chemotherapeutic agents.283,284 However, these drugs are also associated with some unique and severe toxicities.285 For example, cardiovascular complications such as LVD are associated with HER2 inhibitors (eg, trastuzumab), hypertension and arterial thromboembolic events (ATEs) are associated with vascular endothelial growth factor receptor (VEGFR) inhibitors (e.g., bevacizumab),286-288 whereas dermatologic toxicities (acneiform rash and hand-foot skin reaction) are the major adverse effects of epidermal growth factor receptor (EGFR) inhibitors (eg, erlotinib, sunitinib, sorafenib, cetuximab).289

There are limited but growing data available on the toxicity safety and efficacy of targeted therapies in older patients with cancer. Prospective clinical trials that include a sufficiently large number of older patients are needed to accurately determine the efficacy and tolerability of targeted therapies in this cohort of patients. In patients who are not able to tolerate cytotoxic chemotherapy, the risk-benefit ratio should be considered prior to initiation of targeted therapy and the use of targeted therapies should be individualized.

See “Disease-specific issues” for the efficacy and tolerability of specific targeted therapies in older patients with cancer.

Adherence to Therapy

Adherence to the prescribed regimen, especially oral therapy, is essential to derive maximal clinical benefit. While older age per se is not a consistent risk factor for non-adherence, older adults are at an increased risk for non-adherence for a variety of reasons including cognitive impairment, increased number of comorbid conditions, polypharmacy, higher risk of side effects adversely affecting comorbidities, increased likelihood of drug interactions, limited insurance coverage, social isolation, and inadequate social support.290

Discontinuation and nonadherence to adjuvant hormonal therapy is well documented in women with early-stage breast cancer.291 In studies that
have evaluated adherence to adjuvant hormonal therapy among older women (55 years or older) diagnosed with early-stage breast cancer, the reported rates of nonadherence or discontinuation range from 15% to 49%. In a cohort of 961 women (65 or older) diagnosed with early-stage estrogen receptor-positive or indeterminate breast cancer, Owusu et al reported a discontinuation rate of 49% before the completion of 5 years. Women aged 75 years or older, those with an increase in the CCI, and those with an increase in the number of cardiopulmonary comorbidities at 3 years from diagnosis, those with an indeterminate estrogen receptor status, and those who had received breast-conserving surgery without RT were at higher risk of discontinuation. Women with estrogen receptor-negative and node-positive disease, those who report severe initial side effects (depression, nausea, visual complaints, and vaginal bleeding), and women with neutral or negative beliefs about the value of hormonal therapy are also more likely to discontinue therapy.

Adherence to adjuvant chemotherapy has also been evaluated in older patients with early-stage breast cancer. In the randomized study (CALGB 49907) that evaluated adjuvant chemotherapy with oral capecitabine vs. standard chemotherapy in 161 women (65 years or older) with early-stage breast cancer, 25% of the patients took fewer than 80% of the planned doses. Non-adherence was more likely among women with node-negative disease and mastectomy. Adherence was not related to age, tumor stage, or hormone receptor status. However, in other studies, poor adherence to adjuvant chemotherapy was more frequent in older patients (65–75 years or older).

Although nonadherence to adjuvant chemotherapy was not associated with shorter RFS in the CALGB 49907 study (may be due to limited sample size), other studies have reported inferior clinical outcomes in patients with non-adherence to cancer therapy. Among 8,769 women treated with adjuvant hormone therapy for stage I-III breast cancer, Hershman et al identified early discontinuation and non-adherence to adjuvant hormonal therapy as independent predictors of increased mortality. At a median follow-up of 4 years, the estimated 10-year survival rates were 80.7% and 73.6%, respectively, for women who continued hormonal therapy and those who discontinued therapy ($P < .001$). For those who continued, the 10-year survival rate was higher for women with adherence to therapy than for those with non-adherence (81.7% and 77.8%, respectively; $P < .001$). In the ADAGIO study, non-adherence was associated with poorer response to imatinib in patients with CML; non-adherence rates were significantly higher for patients with suboptimal response compared to those with optimal response to imatinib (23% and 7%, respectively). Marin and colleagues also identified adherence as the only independent predictor for achieving complete molecular response on standard-dose imatinib in patients with CML. Poor adherence to imatinib therapy has also been identified as the most important factor contributing to cytogenetic relapse and imatinib failure.

Treatment-related adverse events, complexity of regimens, poor understanding of the need for treatment, and the consequences of non-adherence are some of the common barriers to adherence. In a multicenter, prospective, open-label randomized trial of exemestane vs. letrozole ($n = 503$), 32.4% discontinued initial therapy within 2 years due to adverse effects and the median time to treatment discontinuation was 6 months. In a recent survey of women taking oral hormonal therapy for breast cancer, prior knowledge about the impact of adherence on clinical outcomes and better management of treatment-related side effects were indicated as most important factors for increasing compliance.
In older patients with cancer, assessment of risk factors for non-adherence is recommended when considering a treatment regimen that will include an oral agent. Close monitoring of patient’s adherence, reducing regimen complexity (if possible), interventions designed to educate older patients about the risks and benefits of oral therapy and the importance of adherence to therapy, adequate and appropriate management of side effects, and scheduling follow-up at regular intervals to review the side effects are some of the strategies that may be helpful to minimize non-adherence to therapy.

Disease-Specific Issues

Since the biologic characteristics of certain cancers are different in older patients compared to their younger counterparts and partly because of the decreased tolerance of treatment by older patients, chemotherapy should be individualized based on the nature of the disease and the performance status of the patient. Disease-specific issues related to age in some cancer types are discussed below.

Breast Cancer

Breast cancer in older women is associated with a more favorable tumor biology due to the high prevalence of hormone receptor-positive, HER2-negative, slowly proliferating tumors. Nevertheless, women older than 75 years are usually managed with less aggressive treatment and have higher mortality rates from early-stage breast cancer than younger women.

Axillary lymph node dissection (ALND) in patients with early breast cancer improves locoregional control and provides staging information but is also associated with undesirable morbidity. Data from a randomized clinical trial suggest that ALND did not result in improvement in DFS or OS compared to sentinel lymph node dissection alone in patients with invasive breast cancer (T1/T2) with limited sentinel lymph node involvement who were treated with breast conservation and systemic therapy. Older patients with early-stage and clinically node-negative breast cancer also did not benefit from ALND in terms of breast cancer mortality or survival. In the absence of definitive evidence demonstrating superior survival associated with ALND, this procedure can be considered optional for older patients with particularly favorable tumors, those with serious comorbid conditions, and for patients for whom the selection of adjuvant systemic therapy is unlikely to be affected.

RT as a component of breast conserving therapy is not always necessary in selected women 70 years of age or older with stage I breast cancer. In a study that randomized women (70 years or older) with clinical stage I, estrogen receptor-positive breast cancer, to receive lumpectomy and tamoxifen with whole breast RT or lumpectomy and tamoxifen for 5 years, there were no differences in OS or breast cancer-specific survival. However, locoregional recurrence was higher among women who did not receive RT. At the median follow-up of 12.6 years, the 10-year local recurrence rate was 2% and 10%, respectively, for those who received tamoxifen with RT and tamoxifen alone. There were no significant differences in time to mastectomy, time to distant metastasis, breast cancer-specific survival, or OS between the two groups. The 10-year OS rate was 67% and 66%, respectively, for the two groups.

Older women with stage I-III breast cancer derive similar clinical benefits from adjuvant hormonal therapy compared to younger patients. Adjuvant hormonal therapy is widely used in older women with breast cancer because of the increase in the proportion of hormone-receptor-positive tumors with age.
The age-associated benefit of adjuvant chemotherapy has been more controversial, with some studies suggesting a decreased benefit from adjuvant chemotherapy with increasing age319 and others suggesting a preserved benefit in patients across all age groups. Overall, age-specific data in this population are limited. However, in the CALGB 49907 study, adjuvant chemotherapy with CMF (cyclophosphamide, methotrexate, and fluorouracil) or doxorubicin plus cyclophosphamide was superior to capecitabine alone in women 65 years or older with invasive breast cancer.320 The 3-year RFS rates were 68\% and 85\%, respectively, for the capecitabine group and the standard chemotherapy group ($P < .001$). The corresponding OS rates were 86\% and 91\%, respectively ($P = .02$).320 An unplanned subset analysis of this trial showed that the benefit was pronounced in women with hormone receptor-negative tumors ($P < .001$). The US Oncology Research Trial 9735 demonstrated that non-anthracycline-based adjuvant chemotherapy with docetaxel and cyclophosphamide was associated with a superior DFS and OS compared to doxorubicin plus cyclophosphamide in younger and older patients with HER2-positive and HER2-negative early-stage breast cancer.321 At a median follow-up of 7 years, the DFS (81\% and 75\%, respectively; $P = .033$) and OS (87\% and 82\%, respectively; $P = .032$) rates were significantly higher for docetaxel and cyclophosphamide. Older women experienced more febrile neutropenia with docetaxel and cyclophosphamide and more anemia with doxorubicin plus cyclophosphamide. However, in this trial only 16\% of patients were 65 years or older.

Trastuzumab is approved for the treatment of patients with HER2-positive early-stage and metastatic breast cancer. However, few older patients (70 years or older) have been included in the pivotal trastuzumab trials.322,323 Cardiac toxicity has been a concern in patients receiving trastuzumab-based therapy.215 Age is a risk factor for CHF in patients receiving trastuzumab-based regimens. In older patients (70 years or older), trastuzumab-related cardiotoxicity was associated with a history of cardiac disease and diabetes.220 Age is also a significant risk factor for CHF in women receiving anthracycline-based chemotherapy.210 See Cardiac Toxicity under Side Effects of Chemotherapy in this discussion.

Central Nervous System Cancers

Glioblastoma Multiforme/Anaplastic Astrocytoma

Surgery is the primary treatment option for newly diagnosed patients with glioblastoma multiforme or anaplastic astrocytoma. Available evidence suggests that gross total resection is associated with greater OS in patients 70 years or older.324,325 In a small, randomized study involving patients 65 years or older ($n = 30$), the estimated median survival time was longer after open craniotomy and resection of the tumor (171 days compared to 85 days after the stereotactic biopsy; $P = .035$).324 For patients 65 years or older, gross total resection was associated with a longer survival compared to biopsy and subtotal resection in a retrospective analysis.325 It is difficult to be certain, given the small size of the randomized trials studies and the retrospective nature of other studies, whether the improved survival is a direct effect of the degree of surgery or related to selection bias. Furthermore, the median survival after resection alone is less than 12 months, indicating that additional treatment options are needed. In a retrospective review, aggressive treatment with all three components (RT, chemotherapy, and surgery) was associated with best OS.326 Postoperative RT alone or in combination with temozolomide has been effective in improving clinical outcomes in older patients.327-329 In a small randomized study (70 years or older; $n = 85$), at a median follow-up of 21 weeks, median survival was longer for those who received postoperative RT plus supportive care compared to supportive care...
alone (29 weeks and 17 weeks, respectively).³²⁸ RT was not associated with severe adverse events and the results of quality-of-life and cognitive evaluations over time also did not differ significantly between the treatment groups. In another randomized trial, median OS was similar for postoperative standard RT (5.1 months) and shorter-course RT (5.6 months) for older patients (60 years or older, n = 100).³²⁷ However, among those who completed RT as planned, more patients who received standard RT required a post-treatment increase in corticosteroid dosage (49% compared to only 23% of those who received shorter-course RT). These results suggest that postoperative shorter-course RT is a reasonable treatment option for patients 70 years or older. In a phase III randomized trial, the addition of temozolomide concurrently with RT followed by 6 months of adjuvant temozolomide improved survival rates in patients between the ages 60 to 70 years with newly diagnosed patients with glioblastoma multiforme.³²⁹ At 5-year follow-up, OS rates were 27%, 16%, 12%, and 9.8% at 2, 3, 4, and 5 years, respectively, for those who received RT with concurrent temozolomide. The corresponding survival rates were 11%, 4%, 3%, and 2% for those treated with RT alone. However, the benefit of concurrent chemoradiation therapy is unclear in patients older than 70 years, but is likely to be helpful in selected “fit” patients.³³⁰

More recent randomized phase III studies have demonstrated the non-inferiority of temozolomide compared to RT in older patients with anaplastic astrocytomas and glioblastomas.³³¹,³³² In the NOA-08 randomized phase III trial (373 patients; 65 years or older with anaplastic astrocytoma or glioblastoma), the median OS (8.6 months and 9.6 months, respectively; \(P = .033 \)) and event-free survival (EFS; 3.3 months and 4.7 months, respectively; \(P = .043 \)) were not significantly different between the temozolomide and RT groups.³³¹ The Nordic phase III trial which randomized 291 patients (60 years or older) with glioblastoma across three treatment groups (temozolomide, hyperfractionated RT, and standard RT) also reported significantly longer median OS with temozolomide compared to standard RT (8.3 months vs. 6.0 months; \(P = .01 \)), but the median OS was similar for patients treated with temozolomide and hyperfractionated RT (8.4 months vs. 7.4 months; \(P = .12 \)).³³² Methylguanine DNA-methyltransferase (MGMT) gene is a predictive marker for survival benefit in patients treated with temozolomide alone in both trials.

In a single-institution retrospective analysis, bevacizumab, an anti-VEGFR antibody, resulted in a significant improvement in progression-free survival (PFS) and OS in patients 55 years or older with poor performance status.³³³ VEGFR expression was also significantly higher in patients 55 years or older, implying that bevacizumab could be beneficial for this group of patients with recurrent glioblastoma multiforme.³³³

Primary CNS Lymphoma

High-dose methotrexate-based chemotherapy with whole brain RT (WBRT) has improved survival for older patients with primary CNS lymphoma (PCNSL). However, patients older than 60 years treated with WBRT are at an increased risk of developing neurotoxicity. In a cohort study of 57 patients (median age of 65 years and median Karnofsky performance score of 70) with newly diagnosed PCNSL, Gavrilovic et al reported a median OS of 29 months for patients older than 60 years regardless of whether they received WBRT.³³⁴ There was a striking increase in neurotoxicity in patients older than 60 years compared to younger patients (75% and 26%, respectively). Other studies have reported favorable outcomes with a reduced risk of delayed neurotoxicity in older patients treated with methotrexate-based chemotherapy alone.³³⁵,³³⁷ In a retrospective review of 31 patients 70
years or older, high-dose methotrexate induced an overall radiographic response rate of 97%; the PFS and OS rates were 7 months and 37 months, respectively. In another retrospective analysis, Ney et al reported a median OS of 25 months in patients 65 years or older treated with methotrexate-based chemotherapy alone. A more recent retrospective analysis showed that high-dose methotrexate-based chemotherapy was also well tolerated and effective in patients 80 years or older (24 patients) with a response rate of 62.5%. Median OS and PFS were 7.9 months and 6.5 months, respectively. The 2- and 3-year survival rates were 33% and 17%, respectively. These results indicate that patients 60 years or older with PCNSL should be treated initially with chemotherapy, saving WBRT for those with recurrent or refractory disease.

Gastrointestinal Cancers

Colon Cancer

Age alone should not be a contraindication for curative surgery in older patients with early-stage and resectable colorectal cancer. Results of a retrospective study that evaluated age-related surgical risk and outcome in patients with colorectal cancer showed that the long-term results after surgery were more dependent on the stage of disease and on the type of adjuvant or palliative treatment than on age. In the metastatic setting, a study by Adam et al compared the outcome of liver resection for colorectal metastases in older patients with that of younger patients; the 3-year OS was 57% in older patients and 60% in younger patients ($P < .001$). The OS was similar among patients aged 70 to 75, 75 to 80, or at least 80 years (58%, 55% and 54%, respectively; $P = .160$). Careful preoperative planning and non-emergent surgery are more likely to result in optimal outcomes.

In the adjuvant setting, older patients derive similar benefit from 5-FU-based chemotherapy as younger patients. However, older patients may be at an increased risk for hematologic toxicities. In a pooled analysis of adjuvant chemotherapy trials, the relative benefit of OS from adjuvant chemotherapy was similar across all age groups, with no increased incidence of toxicities among patients 70 years or older, with the exception of leukopenia in one study. The 5-year OS rate was 71% for those who received adjuvant chemotherapy compared to 64% for those untreated. However, after 5 years, the absolute benefit of chemotherapy was smaller in patients 70 years or older due to competing causes of death. Pooled analyses of data from adjuvant trials using newer regimens containing oxaliplatin did not show significant benefit in DFS or OS compared to fluorouracil and leucovorin in patients older than 70 years. For patients 75 years or older with stage III colon cancer, a recent retrospective analysis suggests that oxaliplatin-containing regimens may offer a small incremental survival benefit over non-oxaliplatin regimens. Due to the lack of data from prospective randomized studies, adjuvant chemotherapy with newer regimens should be considered on an individual basis for patients 70 years or older.

For patients with metastatic disease, 5-FU-based palliative chemotherapy resulted in equal OS (10.8 months and 11.3 months, respectively; $P = .31$) and PFS (5.5 months and 5.3 months, respectively; $P = .01$) in older (70 years or older) and younger patients with metastatic colorectal cancer. Infusional 5-FU was more effective than bolus 5-FU in both age groups. In a recent randomized trial (MRC FOCUS2) of older and frail patients with metastatic colorectal cancer, the addition of reduced-dose oxaliplatin to 5-FU or capecitabine was not associated with a significant improvement in median PFS (5.8 months vs. 4.5 months; $P = .07$). The same study also showed that the replacement of 5-FU with capecitabine resulted in a higher rate of grade 3 or higher toxicity with no improvement in quality of life. In the
OPTIMOX1 study, oxaliplatin-based chemotherapy stop-and-go (FOLFOX7 for 6 cycles, maintenance without oxaliplatin for 12 cycles, and reintroduction of FOLFOX7) had similar efficacy and tolerability compared to standard oxaliplatin-based regimen (FOLFOX4) in patients aged between 76 and 80 years with metastatic colorectal cancer, implying that stop-and-go strategies or maintenance 5-FU–based chemotherapy may be desirable for older patients with metastatic disease to minimize toxicities.

Bevacizumab and anti-epidermal growth factor receptor (EGFR) antibodies, cetuximab and panitumumab, have also been evaluated for the treatment of older patients with metastatic colorectal cancer.

The safety and efficacy of bevacizumab in older patients (65 years or older) were comparable to that of younger patients. In the BRiTE study, the median PFS was similar across all age cohorts. However, median OS and survival beyond progression declined with age. In a retrospective analysis, the addition of bevacizumab to chemotherapy significantly improved PFS and OS in patients 65 years or older with metastatic colorectal cancer. However, it is associated with a higher rate of ATEs in older patients.

Data from retrospective studies have shown that cetuximab as a single agent or in combination with irinotecan has a favorable safety profile in heavily pretreated older patients (70 years or older) with metastatic colorectal cancer and the efficacy was similar to that observed in younger patients with acceptable tolerability. In a phase II clinical trial, cetuximab was safe and moderately active when used as a first-line single agent in fit older patients with metastatic colorectal cancer.

In the phase III trial that evaluated the activity of panitumumab plus best supportive care vs. best supportive care alone in patients with metastatic colorectal cancer, panitumumab had a favorable effect on PFS regardless of age (hazard ratio = 0.51 and 0.60, respectively, for patients younger than 65 and older than 65 years). The PFS, OS, and overall response rates were similar in older and younger patients.

Among patients with metastatic colorectal cancer treated with cetuximab and panitumumab, available evidence indicates that the presence of wild type-KRAS mutations is associated with higher response rates and PFS. KRAS mutation testing could be helpful for the appropriate selection of patients who could benefit from treatment with cetuximab and panitumumab.

Rectal Cancer

Combined modality therapy with surgery, RT, and chemotherapy is the standard of care for the majority of younger patients with locally advanced disease. This approach is not widely used in older patients mainly because of treatment-related complications that could outweigh the benefits of rectal cancer treatment for this group of patients.

Available evidence from some retrospective analyses suggests that selected older patients may have survival benefit with rectal cancer surgery similar to their younger counterparts. However, postoperative complications are more severe in older patients. In the Dutch trial that established the safety and efficacy of total mesorectal excision, postoperative complications occurred more frequently in older patients and were associated with a significantly higher risk of 6-month mortality in patients 75 years or older compared to those 75 or younger. The overall 6-month mortality was 4 times higher in older patients than in younger patients (14% and 3.3%, respectively; P < .001).
A pooled analysis from 22 clinical trials with over 8,000 rectal cancer patients demonstrated a reduction in the risk of local recurrence and death from rectal cancer with perioperative radiotherapy regardless of patient age. However, the risk of death from non-cancer–related causes was increased in the older patient population. The Stockholm II trial, a population-based prospective randomized trial, also reported similar findings on preoperative radiotherapy. Although preoperative short-term radiotherapy reduced the risk of pelvic recurrence and improved survival after curative surgery, mortality from noncancer causes was higher especially in older patients treated with RT during the first 6 months after surgery. Cardiovascular disease was the main cause of postoperative mortality and intercurrent death following RT.

Retrospective studies have also reported that preoperative chemoradiation increases the feasibility of sphincter-preserving surgery with good tumor downstaging, in patients 70 years or older with locally advanced cancer. However, there are conflicting reports regarding the tolerance of this approach. In one study, neoadjuvant chemoradiation was associated with comparable tolerability and response rates in vulnerable and fit older patients (70 years or older). In another series, the majority of patients 75 years or older treated with combined modality treatment required early termination of treatment, treatment interruptions, and dose reductions. Postoperative chemoradiation has also been associated with improved survival in older patients with node-positive stage III rectal cancer but not for those with stage II cancer.

In the absence of data available from randomized studies, individualized treatment options are recommended for older patients with rectal cancer. Older patients should not be excluded (based only on chronologic age) from the curative treatment options that are available for younger patients. Multidisciplinary evaluation and optimization of comorbidities are important for optimal patient outcomes in rectal cancer management. Medically fit older patients should be considered for a combined modality treatment approach or for participation in clinical trials designed for older patients with this disease.

Genitourinary Cancers

Bladder Cancer

Intravesical immunotherapy with Bacillus Calmette-Guérin (BCG) has decreased efficacy, particularly in patients older than 80 years. In one study, at a median follow-up of 24 months, the cancer-free survival rates were 39% and 61%, respectively, for patients older than 80 years and patients 61 to 70 years treated with BCG ($P = .0002$). Age was an independent risk factor for decreased response after taking into account the stage, grade, sex, and prior treatment. In the second study, the percent of patients free from disease at 5 years after BCG therapy was 27% and 37%, respectively ($P = .005$), for patients 70 years or older and patients younger than 70 years.

Age alone should not be a criterion for making decisions regarding cystectomy, RT, and chemotherapy in older patients. Radical cystectomy with pelvic lymph node dissection (PLND) is the standard treatment for patients with muscle-invasive bladder cancer. In a SEER database analysis of 10,807 patients diagnosed with muscle-invasive bladder cancer, radical cystectomy resulted in a longer OS than treatment with RT in all age groups. While the OS benefit was significantly higher in the radical cystectomy arm for patients 70 to 79 years (33 months vs. 19 months), the survival benefit was smaller in patients 80 years or older (18 months vs. 15 months). In patients 80 years or older, there was a small OS benefit for radical cystectomy with PLND compared to bladder preservation with RT (21 months vs. 15 months, respectively).
In a randomized study that compared neoadjuvant chemotherapy plus cystectomy with cystectomy alone, the addition of neoadjuvant chemotherapy resulted in improved survival among patients with locally advanced cancer.\(^{378}\) Median survival was 46 months and 77 months, respectively (\(P = .06\)), for patients assigned to cystectomy and cystectomy plus neoadjuvant chemotherapy and the survival benefit was preserved with age.\(^{378}\)

Kidney Cancer
Surgical resection remains an effective treatment for patients with localized renal cell carcinoma (RCC). However, in a recent study, Lane et al reported that surgical management of clinically localized renal cortical tumors was not associated with increased survival in patients 75 years or older.\(^{379}\) Radical nephrectomy resulted in renal dysfunction in 86% of patients and was a significant predictor of cardiovascular mortality. The authors concluded that the surgical management of older patients with localized RCC should be individualized based on predicted life expectancy.

Recently, several targeted therapies including bevacizumab,\(^{380}\) sorafenib,\(^{381,382}\) sunitinib,\(^{383,384}\) and mammalian target of rapamycin inhibitors (everolimus and temsirolimus)\(^{385,386}\) have been evaluated in older patients with metastatic RCC. Sorafenib, sunitinib, and everolimus have similar efficacy in younger and older patients with advanced RCC.

In the retrospective analysis of the Advanced Renal Cell Carcinoma Sorafenib (ARCCS) program in North America, the median OS (46 weeks vs. 50 weeks; \(P = .4\)) and PFS (42 weeks vs. 35 weeks; \(P = .8\)) were similar for patients 70 years or older and patients younger than 70 years with advanced RCC.\(^{382}\) The incidences of most common adverse events (grade 3 or higher; rash or desquamation [5% in both groups], hand-foot skin reaction [8% and 10%, respectively], hypertension [5% vs. 4%, respectively], and fatigue [7% vs. 4%, respectively]) were also similar in both age groups.\(^{382}\) In a pooled analysis of 6 clinical trials that evaluated the efficacy and safety of sunitinib in patients with metastatic RCC, the median PFS (9 months and 11 months, respectively; \(P = .0830\)) and OS (23.3 months and 23.7 months, respectively; \(P = .5441\)) were similar for patients younger than 70 years and for those 70 years or older.\(^{384}\) The incidences of adverse events were also similar, although some (fatigue, decreased appetite/weight, cough, peripheral edema, thrombocytopenia, and anemia) were more common in older patients.

Temsiorolimus was associated with an improved OS (\(P = .008\)) and PFS (\(P < .001\)) compared to interferon among patients with metastatic RCC and poor prognosis.\(^{385}\) In a multicenter, randomized phase III trial, the median OS was 10.9 months for the temsirolimus group compared to 7.3 months and 8.4 months, respectively, in the groups treated with interferon alfa alone or in combination with temsirolimus. Temsirolimus alone was associated with fewer incidences of grade 3 or 4 adverse events than interferon. Interferon is not recommended for older patients because of its increased toxicity. In a subgroup analysis of a phase III trial that evaluated the safety and efficacy of everolimus in patients with metastatic RCC, median PFS was 5.36 months and 5.13 months, respectively (\(P < .001\)), for patients 65 years or older and 70 years or older.\(^{386}\) Older patients were at increased risk of adverse events including stomatitis, anemia, and infection.

Prostate Cancer
Management of older patients with prostate cancer is similar to that of younger patients.\(^{387}\) Treatment options are based on anticipated life expectancy of the individual patient and whether they are symptomatic. Androgen deprivation therapy (ADT) is associated with an increased risk of fracture.\(^{388}\) ADT significantly decreases muscle mass and
treatment-related sarcopenia appears to contribute to frailty and increased risk of falls in older men. Attention to bone health is warranted in older patients. See the NCCN Guidelines for Prostate cancer for the management of patients with localized or locally advanced disease.

Docetaxel-based chemotherapy has been effective in older patients with metastatic castration-resistant prostate cancer. In the subgroup analysis of the TAX 327 trial, the survival benefit of 3-weekly docetaxel and prednisone compared with mitoxantrone and prednisone was seen across all age groups; median OS was 18.1 months for patients 69 years or older compared to 17.6 months for patients 68 years or younger. The hazard ratios for younger and older patients were 0.81 and 0.77, respectively. The hazard ratio was 0.80 with the age cutoff of 75 years.

Recently, cabazitaxel has demonstrated activity in patients with metastatic castration-resistant prostate cancer that has progressed on docetaxel-based chemotherapy. In a randomized phase III trial, cabazitaxel with prednisone improved OS compared to mitoxantrone plus prednisone. The survival benefit was seen across all age groups. The hazard ratios for OS were 0.62 and 0.81, respectively, for older (65 years or older) and younger patients. Growth factor support is strongly recommended for patients 65 years or older receiving cabazitaxel due to the increased risk of neutropenia in these patients.

Gynecologic Cancers

Ovarian Cancer

Population-based studies suggest that older women are often managed with less aggressive treatment, which may have an impact on the clinical outcome. In an analysis from the Geneva Cancer Registry that included younger and older women diagnosed with primary ovarian cancer, the 5-year disease-specific survival was 18% for women 70 years or older compared to 53% for young women. Older women also had a 2-fold increased risk of death from ovarian cancer compared to younger women. Among older women, the use of surgery and chemotherapy decreases with increasing age and the presence of comorbidities. In a SEER database analysis of 4,617 women (65 years or older) with untreated ovarian cancer, 53% of women 80 years or older did not receive any chemotherapy compared with 14% of women who were 65 to 69 years of age.

In the United States, the proportion of older women treated with ovarian cancer-directed surgery and chemotherapy varies widely (53% to 83% for surgery and 48% to 93% for chemotherapy) depending on the geographic location. In a population-based analysis designed to predict treatment outcomes and risk factors for early death among older patients with advanced ovarian cancer, oncology treatment facility was also identified as an independent predictor of OS at 12 months from diagnosis, in addition to patient’s age, stage at presentation, and the presence of comorbidities. Therefore, improving access to high-quality cancer care may have the greatest impact on improving outcomes in older patients.

Primary treatment for ovarian cancer consists of appropriate surgical staging and cytoreductive surgery, followed by systemic chemotherapy. Older patients with advanced cancer are less likely to enroll in prospective Gynecologic Oncology Group clinical trials, despite the fact that the incidence of stage III-IV ovarian cancer is higher in older women compared to their younger counterparts (82% in women 65 years or older vs. 67% in women younger than 65 years). As a result, there are very limited prospective data regarding the treatment of older patients with newly diagnosed ovarian cancer.
A retrospective exploratory analysis of the AGO OVAR-3 phase III trial, which included 103 patients (70 years or older; 13% of the study population), demonstrated that doublet chemotherapy (paclitaxel with cisplatin or carboplatin) is feasible and tolerable in older patients with advanced ovarian cancer, although early discontinuation was more frequent among older patients. Available evidence from retrospective analyses suggests that intraperitoneal (IP) chemotherapy can be administered safely in selected older patients with adequate support and dose modifications. Although older patients were less likely to complete the planned number of IP chemotherapy cycles, there was no significant association between age and complication rate or PFS. Retrospective analysis of the SOCRATES trial showed that older patients with platinum-resistant ovarian cancer have a poor outcome. The proportion of patients 70 years or older treated with secondary cytoreductive surgery was significantly lower than the younger patients (8.9% vs. 23.9%; \(P = .0018 \)) and response rates to second-line chemotherapy were also significantly lower for older patients (46.5% vs. 67.2%; \(P = .0004 \)).

Age is an important factor that influences the selection of treatment for patients with advanced stage ovarian cancer. In a retrospective analysis of 1,895 patients with stage III epithelial ovarian cancer treated with primary surgery and chemotherapy, increasing age, poor performance status, mucinous or clear-cell histology, and macroscopic disease at surgery were identified as poor prognostic factors. Older age (70 years or older) and the presence of two or more comorbidities have been associated with failure to complete the planned course of chemotherapy. CGA could be useful to assess the individual risk of severe toxicity from chemotherapy in older patients with ovarian cancer.

Head and Neck Cancers

Surgery is associated with good clinical outcomes with acceptable complication rates in older patients; however, complication rates increase with comorbidities. In a retrospective analysis of older patients (70 years or older), the overall complication rate was 63% and 54% of patients experienced clinically important surgical and/or medical complications. Bilateral neck dissection, male sex, presence of two or more comorbidities, and advanced stage of disease were associated with postoperative complications.

Older patients (70 years or older) with squamous cell carcinoma of the head and neck (SCCHN) who are treated with RT experience similar OS in comparison to younger patients. Although there were no significant differences in late toxicities in older patients compared to those younger than 70 years (median of 3 years of follow-up), severe grade 3 and 4 functional acute toxicity was significantly more frequent in older patients (67% for patients 65 years or older compared to 49% for younger patients). Few patients older than 70 have been included in trials evaluating induction chemotherapy and there are limited data on the efficacy and toxicity of such an approach in this subset of patients. Randomized trials and meta-analyses have reported that concurrent chemoradiation offers greater benefit than RT or induction chemotherapy alone. In a prospective randomized study that included 255 patients 60 years or older, concurrent chemoradiation was superior to RT alone or induction chemotherapy followed by RT for laryngeal preservation and locoregional control in patients (both older and younger than 60 years) with localized laryngeal cancer. In the meta-analysis of chemotherapy in head and neck cancer, concurrent chemoradiation offered a significant OS benefit of 4.5% at 5 years compared to RT alone in patients with non-metastatic SCCHN. However, this survival benefit decreased with increased age (71 years
or older). In another retrospective analysis, older age was identified as the most significant factor associated with severe late toxicities (feeding tube dependence 2 years after RT, pharyngeal dysfunction, and laryngeal dysfunction) after concurrent chemoradiation.415 There are not enough data in patients older than 70 to draw firm conclusions regarding a survival advantage of adding concurrent chemotherapy to RT. Similarly, too few patients older than 70 with resected SCCHN have been evaluated in the adjuvant therapy trials and there are limited data regarding the benefit of adding cisplatin to RT.

Cisplatin-based chemotherapy is associated with increased toxicity in older patients with recurrent head and neck cancer.416 In a review of two phase III randomized trials conducted by the ECOG that evaluated cisplatin with paclitaxel or fluorouracil, objective response rates (28\% vs. 33\%; \textit{P} = .58) and median time to progression (5.25 months vs. 4.8 months; \textit{P} = .69) were similar for older and younger patients, respectively.416 However, the incidence of severe nephrotoxicity, diarrhea, and thrombocytopenia were higher among older patients.

Cetuximab has been evaluated only in few patients with head and neck cancer. For patients with locally advanced SCCHN, there is limited evidence regarding the benefit of adding cetuximab to RT in patients older than 64 years.417 Available evidence does not allow one to draw firm conclusions regarding a survival advantage of concurrent cetuximab plus RT. There is also limited evidence regarding the benefit of adding cetuximab to chemotherapy in the treatment of patients older than 64 years with recurrent or metastatic SCCHN.418

Lung Cancers

NSCLC

Surgery is the standard treatment for patients with localized NSCLC. Retrospective studies have demonstrated that age alone is not a contraindication for surgery and surgery is well tolerated in carefully selected patients.419-423 Long-term follow-up of older patients (70 years or older) showed that the mortality and prognosis were similar to those in younger patients.419 The postoperative mortality and the 5-year survival rates were 3\% and 48\%, respectively, for older patients. However, pneumonectomy was associated with a higher mortality rate in patients 70 years or older than younger patients (22\% and 3.2\%, respectively; \textit{P} < .005).424 Therefore, pneumonectomy should be performed with caution in older patients.

Older patients with completely resected NSCLC derive similar survival benefits with adjuvant chemotherapy as younger patients.425-427 A pooled analysis of 4,584 patients from five trials of adjuvant cisplatin-based chemotherapy showed that older patients had a survival benefit that was similar to that of their younger counterparts, without significant toxicity.427 Another retrospective analysis of the Intergroup study (JBR.10) also showed that adjuvant vinorelbine and cisplatin improved survival in patients older than 65 years with acceptable toxicity.426 Combined modality therapy is feasible and effective in older patients with locally advanced disease; however, it is associated with more toxicities (esophagitis, pneumonitis, and myelosuppression), especially in patients with poor performance status.428,429 Langer et al reported that concurrent chemotherapy with once-daily RT was beneficial to older patients with locally advanced NSCLC. Median survival time was 22.4 months with concurrent chemotherapy with daily RT compared to 16.4 months and 10.8 months, respectively, for concurrent chemotherapy with twice-daily RT, and sequential chemotherapy and daily RT. Short-term toxicities were more pronounced in the older patients.428 Schild et al also reported that older and younger patients had similar survival benefit from concurrent chemoradiation therapy.429 The 2- and
5-year survival rates were 36% and 13%, respectively, in older patients with locally advanced disease compared to 39% and 18%, respectively, in patients younger than 70 years (\(P = .4\)). Pneumonitis and myelosuppression were more pronounced in the older patients. In some studies, combined modality treatment was associated with excess toxicity and no survival benefit for the older patients.\(^{430,432}\) More recently, in a phase III randomized trial, Atagi et al also reported significant survival benefit for chemoradiation in older patients (\(n = 200\)) with locally advanced cancer.\(^{432}\) At a median follow-up of 19 months, the median OS was 22.4 months and 16.9 months, respectively, for the chemoradiation therapy and RT alone groups (\(P = .0179\)). Grade 3-4 hematologic toxicities and grade 3 infection rates were higher in the chemoradiation therapy group, whereas incidences of grade 3-4 pneumonitis and late lung toxicity were similar between the two groups.

Chemotherapy is associated with improved quality of care in comparison to best supportive care in older patients with advanced disease.\(^{433,434}\) In the ELVIS study, vinorelbine plus best supportive care was superior to best supportive care alone, in terms of both survival and quality of life.\(^{433}\) Median survival and 1-year survival were significantly better in the vinorelbine arm. The results of the subgroup analyses of phase III trials evaluating chemotherapy for patients with advanced NSCLC have shown that older patients in good performance status derive similar clinical benefit with combination chemotherapy as the younger patients; however, the incidences of toxicities are higher among older patients.\(^{428,435,436}\) The two trials that have compared the combination of vinorelbine and gemcitabine with single-agent vinorelbine or gemcitabine in older patients with advanced NSCLC have shown conflicting results.\(^{437,438}\) The results of the Southern Italy Cooperative Oncology Group (SICOG) phase III trial showed that the combination of gemcitabine and vinorelbine was associated with a significantly better survival than vinorelbine alone in older NSCLC patients.\(^{437}\) However, in the MILES study, the combination of gemcitabine and vinorelbine was more toxic and failed to show any survival advantage over single-agent therapy with vinorelbine or gemcitabine alone.\(^{438}\) There are emerging data confirming the survival benefit of 2-drug regimens compared to single-agent therapy for patients with advanced disease. In the recent multicenter randomized phase III trial (IFCT-0501), the combination of paclitaxel and carboplatin was associated with a significantly longer survival in patients 70 years or older (performance status 0-2) with advanced NSCLC than single-agent therapy with vinorelbine or gemcitabine, despite an increased risk of side effects (including febrile neutropenia, asthenia, and toxic death rate) with combination therapy.\(^{439}\) Median OS was 10.3 months and 6.2 months, respectively, and the 1-year survival rates were 44.5% and 25.4%, respectively.

Bevacizumab and erlotinib have been evaluated in older patients with advanced NSCLC. A retrospective subset analysis of the phase III study (ECOG 4599) and a recent SEER-Medicare analysis suggest that the addition of bevacizumab to paclitaxel and carboplatin may not be associated with any survival benefit in older patients.\(^{440,441}\) In the subset analysis of the ECOG 4599 study, although there was a trend towards higher response rate (29% vs. 17%; \(P = .067\)) and PFS (5.9 months vs. 4.9 months; \(P = .063\)) with paclitaxel, carboplatin, and bevacizumab (PCB) compared with paclitaxel and carboplatin, older patients randomized to PCB experienced a higher degree of toxicity (87% vs. 61%; \(P < .001\)) with no improvement in OS (11.3 months vs. 12.1 months; \(P = .4\)).\(^{440}\) Erlotinib, although active and relatively well tolerated in chemotherapy-naive older patients (70 years or older) with advanced NSCLC, is associated with higher incidences of interstitial lung disease and toxicity-related discontinuation (5% and 12%, respectively).\(^{442}\)
compared to only 1% and 5% observed in the erlotinib arm of the BR.21 trial where the median age was only 62 years. A recent subgroup analysis of the BR.21 trial also confirmed that older patients experienced greater toxicity and prolonged dose interruptions compared to younger patients, even though survival and quality-of-life benefits were similar for both groups.443

SCLC

Combined modality therapy is the recommended treatment for patients with limited-stage disease, whereas chemotherapy alone is the standard treatment option for patients with extensive-stage disease. Available data suggest that older patients have a survival benefit with combination chemotherapy regimens containing platinum and etoposide, albeit with higher treatment-related toxicities.444-447

In a retrospective analysis of the INT 0096 trial that evaluated cisplatin, etoposide, and thoracic RT administered once or twice daily for patients with limited-stage SCLC, the reported response rate (88% vs. 80%; \(P = .11\)), 5-year EFS rate (19% vs. 16%; \(P = .18\)), time to local failure, and duration of response were similar for older patients 70 years or older and those younger than 70 years.444 However, hematologic (grade 4–5: 61% vs. 84%; \(P < .01\)) and other fatal toxicities (1% vs. 10%; \(P = .01\)) were more severe among patients 70 years or older. In addition, the 5-year OS rate was also higher for patients younger than 70 years (22% vs. 16%; \(P = .05\)). Age-specific subset analysis of the NCCTG phase III trial (209 patients) that compared etoposide and cisplatin with either twice-daily or once-daily RT in patients with limited-stage SCLC also reported similar findings.445 The 2-year and 5-year survival rates were not significantly different between the 2 age groups (48% and 22%, respectively, for patients younger than 70 years compared to 33% and 17%, respectively, for patients 70 years or older; \(P = .14\)). However, the incidence of severe pneumonitis (6% vs. 0%; \(P = .008\)) and grade 5 toxicity (5.6% vs. 0.5%; \(P = .03\)) were significantly higher among patients 70 years or older.

Regimens containing carboplatin or cisplatin appear to be equally effective in terms of clinical outcomes, differing only in their toxicity profiles.448,449 The COCIS meta-analysis of individual patient data from four randomized trials showed that carboplatin-containing chemotherapy was associated with a significantly higher incidence of severe neutropenia, anemia, and thrombocytopenia, whereas nausea/vomiting, renal toxicity, and neurotoxicity were higher with cisplatin-containing regimens.449 In the PFS analysis by the subgroups, carboplatin-based regimens were more favorable for older patients than cisplatin-based regimens.

The use of attenuated doses of chemotherapy, although better tolerated, is associated with inferior outcomes in older patients.446 In a phase II trial, chemotherapy with cisplatin and etoposide at two different dose levels (attenuated-dose and full-dose with lenograstim support) was well tolerated in patients 70 years or older (\(n = 95\)), although grade 3–4 myelotoxicity was higher with the full-dose regimen (12% compared to 0% for the attenuated dose regimen). The overall response rate and 1-year survival rates were 39% and 12%, respectively, compared to 69% and 39% for the attenuated-dose regimen.

Hematologic Malignancies

Acute Lymphoblastic Leukemia

Acute lymphoblastic leukemia (ALL) in older patients is characterized by a lower incidence of T-cell ALL and the presence of unfavorable chromosomal abnormalities, both of which have been identified as poor prognostic factors.450,451 It is strongly recommended that older patients with ALL be treated in a specialized center.
In older patients, intensive multiagent chemotherapy regimens have been associated with poor OS, in spite of favorable response rates following induction therapy.452-454 In an analysis of 268 patients (60 years or older) with newly diagnosed ALL, induction therapy with vincristine, doxorubicin, and dexamethasone (VAD) induced an overall complete response (CR) in 65\% of patients.453 However, the 3-year OS rate was less than 10\%. In a multicenter prospective study that evaluated age-adapted induction chemotherapy followed by maintenance therapy with interferon and chemotherapy, 85\% of patients 55 years or older had a CR after completion of induction therapy with a median OS and DFS was only 14 months.454 The inferior outcomes have been attributed to treatment-related mortality (7.5\%) during induction and more resistant disease. A recent randomized phase II trial (GRAALL-SA1) showed that with the use of pegylated doxorubicin in combination with vincristine and dexamethasone, pegylated doxorubicin did not result in any survival benefit over doxorubicin, despite its better toxicity profile (lower risk of cardiotoxicity and myelosuppression), due to a higher rate of induction failure (17\% vs. 3\%, \textit{P} = .10) and a higher cumulative incidence of relapse (52\% vs. 32\%) at 2 years.455

More recently, O'Brien et al reported that dose-intensive induction therapy with hyperCVAD regimen induced CR rates of 84\% in patients 60 years or older, with an improved 5-year OS rate (20\% compared with 9\% on regimens that were used before hyperCVAD) and decreased incidence of disease resistance.456 However, this regimen was also associated with higher treatment-related mortality (10\% vs. 2\%) during induction and significantly higher incidence of death (34\% vs. 7\%; \textit{P} < .001) from infections associated with myelosuppression among older patients.

Philadelphia-chromosome (Ph-chromosome) is the most frequent cytogenetic abnormality in older patients with ALL. Ph-chromosome results from the reciprocal translocation t(9;22) that fuses the \textit{BCR} gene on chromosome 22 and the \textit{ABL} gene located on chromosome 9. \textit{BCR-ABL} tyrosine kinase inhibitors (imatinib and dasatinib) in combination with steroids have been evaluated as induction therapy in older patients with Ph-positive ALL.457,458 In a phase II study of older patients with Ph-positive ALL (\textit{n} = 30; 60 years or older), induction therapy with imatinib and steroids induced complete remissions and prolonged survival without additional chemotherapy.457 Median survival from diagnosis was 20 months. In another phase II study (\textit{n} = 55; 12 patients were older than 60 years), induction therapy with dasatinib and steroids and intrathecal chemotherapy induced complete remission rates in all patients.458 At 20 months, the OS and DFS rates were 69\% and 51\%, respectively. In a randomized trial of 55 older patients, induction therapy with imatinib alone resulted in a significantly higher complete remission rate (96\% vs. 50\%; \textit{P} = .001) with lower toxicity compared to induction chemotherapy.459 Severe adverse events were significantly more frequent with induction chemotherapy (90\% vs. 39\%; \textit{P} = .005). The OS was not significantly different between the two groups. The use of imatinib and steroids as consolidation therapy following induction chemotherapy has also resulted in improved outcomes (compared to historical controls) in older patients with Ph-positive ALL.460

Among patients with CD20-positive and Ph-negative ALL, the benefit of adding rituximab to chemotherapy has been confined only to younger patients. In a study of 282 adolescents and patients with CD20-positive and Ph-negative ALL treated with a modified hyperCVAD and rituximab, the 3-year complete remission duration was 67\% for younger patients compared to 45\% for patients 60 years or older.461 The 3-year OS rates were 78\% and 45\%, respectively.
Acute Myeloid Leukemia
AML in older patients is associated with a poor prognosis. Increasing age, FLT3 internal tandem duplications, unfavorable cytogenetics, increasing white blood cell count, poorer performance status, and the presence of secondary AML are considered poor prognostic indicators in this group of patients. 462, 463 In a retrospective analysis of 968 patients with AML, there was a marked increase in the proportion of patients with unfavorable cytogenetics (35% in patients younger than 56 years to 51% in patients older than 75 years), prevalence of multidrug resistance (33% in patients younger than 56 years compared to 57% in patients older than 75 years), and treatment-related mortality (especially in patients with poor performance status) within 30 days following induction therapy (82% among patients older than age 75 years). 464

In older patients 60 years or older, although anthracycline-based induction chemotherapy regimens have resulted in CR rates ranging from 39% to 63%, median OS and DFS have remained poor (7–12 months). 465 Despite these poor outcomes, standard intensive treatment has been shown to improve early death rates and long-term survival compared with palliative treatment in most patients with AML up to 75 to 80 years of age. 466, 467

Induction chemotherapy should be considered for older patients in good performance status with no comorbidities. The optimal chemotherapy regimen is unknown. In a randomized trial (1314 patients older than 56 years) that compared 3 different induction regimens, DAT (daunorubicin, cytarabine, and thioguanine), ADE (cytarabine, daunorubicin and etoposide), or MAC (mitoxantrone and cytarabine), the remission rates in the DAT arm were significantly better than in the ADE (62% vs 50%; P = .002) or MAC (62% vs 55%; P = .04) arms, but there were no differences in the 5-year OS rates between the 3 regimens (2% vs. 8% vs. 10%, respectively). 468 The remission or survival rates were also not improved by the addition of G-CSF. In another study of 362 older patients with previously untreated AML (139 patients 70 years or older) randomized to daunorubicin, idarubicin, or mitoxantrone with a standard dose of cytarabine as induction therapy, there was no difference in efficacy among the 3 regimens in terms of CR rate, OS, and DFS. 469 On the other hand, an exploratory analysis of a randomized phase III trial that compared induction chemotherapy with mitoxantrone and etoposide (ME) vs. daunorubicin and cytarabine (AD) demonstrated that the use of etoposide with an anthracycline resulted in poor survival rates (11% and 19%, respectively, for ME and AD regimens) in patients with untreated AML older than 55 years of age, although there was no significant difference in CR rate between the 2 regimens (34% and 43%, respectively, for patients treated with ME and AD). These findings suggest that cytarabine should be used in combination with an anthracycline for patients who are considered candidates for induction chemotherapy. 470

Induction therapy with intensified anthracycline doses and cytarabine has not been consistently associated with improved outcomes in older patients. 471-475 For example, the LRF AML14 trial did not show any difference in terms of CR rate or OS for patients treated with daunorubicin (50 mg/m² vs. 35 mg/m²) and cytarabine (200 mg/m² vs. 400 mg/m²) at 2 different dose levels. 472 In contrast to these findings, Lowenberg et al showed that in patients older than 60 years, dose escalation of daunorubicin (90 mg/m²) resulted in a higher response rate than the conventional dose (45 mg/m²), without any additional toxic effects. 473 The CR rate was 64% and 54%, respectively (P = .002) but there was no difference in OS rates. The subgroup analysis showed a potential benefit for dose escalation of daunorubicin in patients 60 to 65 years of age (especially those with core binding factor [CBF]-AML)
in terms of CR (51% in the conventional-dose group vs. 73% in the escalated-dose group), the 2-year DFS (14% vs. 29%, respectively), and 2-year OS rates (23% vs. 38%, respectively). The results from Acute Leukemia French Association (ALFA) trials (ALFA-9801 and ALFA-9803) also showed that although the use of idarubicin in combination with cytarabine resulted in higher CR rates than daunorubicin, it did not translate into a benefit in OS. In a more recent report, a combined analysis of these two trials showed that induction therapy with idarubicin was associated with a significantly higher cure rate than daunorubicin (16.6% and 9.8%, respectively; \(P = 0.018 \)) in patients 50 years or older. In addition to younger age and favorable-risk AML, idarubicin treatment was also identified as a predictor of higher cure rate in multivariate analysis \((P = 0.04) \), although it did not have any influence on OS \((P = .11) \). Standard induction chemotherapy is associated with a 10% to 20% risk of death in patients older than 56 years. Prediction tools are available to assist in counseling older patients regarding the safety and efficacy of standard induction chemotherapy. The probability of obtaining a CR and the risk of treatment-related mortality can be calculated utilizing a web-based tool: http://www.aml-score.org/. In view of the seriousness of the complications of AML treatment, older patients with AML should be treated according to the NCCN Guidelines for AML in centers skilled in the management and supportive care of AML.

Multiple Myeloma

High-dose therapy followed by autologous stem cell transplantation (HDT/ASCT) is the initial treatment options for younger patients. However, the role of this approach in older patients has not yet been established in randomized trials since the majority of these trials included patients younger than 65 years. There is also lack of consensus on what constitutes transplant eligibility in older patients. Recent reports (mostly from retrospective studies) suggest that ASCT may be beneficial for selected older patients with good performance status and no severe comorbidities. Initial evaluation should determine whether the patient is a potential candidate for HDT/ASCT. An older patient’s eligibility for transplant should be based on the assessment of their physiologic age rather than chronologic age, with specific attention to comorbidities, functional status, and adequate cardiac, pulmonary, renal, and hepatic function. Melphalan-based chemotherapy should be avoided in transplant candidates. Early referral to a transplant physician should be considered if uncertain whether the patient is transplant-eligible prior to exposure to alkylating agents.

Immunomodulator-based Combination Therapy

In randomized studies the addition of thalidomide to the combination of melphalan and prednisone (MP) was associated with significantly superior response rates, PFS, time-to-treatment progression, and EFS in older patients with newly diagnosed multiple myeloma. However, OS benefit was reported only in two of these studies. In the IFM 99-06 trial, which compared melphalan, prednisone, and thalidomide (MPT), MP, or reduced-intensity ASCT, median OS was 51.6 months, 33.2 months, and 38.3 months, respectively, for the three treatment groups; the MPT regimen was associated with a significantly better OS than MP regimen \((P = .0006) \) or reduced-intensity ASCT \((P = .027) \). In the IFM 01/01 trial, median OS was 44 months and 29 months, respectively \((P = .028) \), for older patients (75 years or older) treated with MPT and MP. MPT was associated with significant toxicity (constipation, fatigue, deep vein thrombosis [DVT], neuropathy, cytopenias, and infection).

In a double-blind, multicenter, randomized study, induction therapy with melphalan, prednisone, and lenalidomide followed by lenalidomide
maintenance (MPR-R) significantly prolonged PFS in patients 65 years or older with newly diagnosed multiple myeloma who were ineligible for transplantation. At a median follow-up of 30 months, the median PFS was significantly longer with MPR-R (31 months) than with MPR (14 months; \(P < .001 \)) or MP (13 months; \(P < .001 \)). The greatest PFS benefit was observed in patients 65 to 75 years of age. MPR-R was also associated with higher response rate than MPR or MP (77%, 68%, and 50%, respectively). The results of a landmark analysis showed that MPR-R resulted in a 66% reduction in the rate of progression that was age-independent.

Bortezomib-Based Combination Therapy

Bortezomib-based combinations have been evaluated as initial therapy and maintenance therapy in older patients with untreated multiple myeloma. Induction therapy with bortezomib, melphalan, and prednisone (VMP) was superior to MP alone in patients (median age 71 years) with newly diagnosed multiple myeloma who were ineligible for HDT/ASCT and the survival benefit was seen across all age groups. However, the rates of adverse events (peripheral neuropathy, cytopenias, and fatigue) were higher among patients in the VMP group than in the MP group. The subgroup analyses of the VISTA trial showed that VMP resulted in longer OS among patients younger than 75 years compared to those 75 years or older (3-year OS rates were 74.1% and 55.5%, respectively; \(P = .011 \)).

In the Spanish randomized trial (which evaluated induction therapy with VMP or bortezomib, thalidomide, and prednisone [VTP] followed by maintenance therapy with bortezomib with thalidomide or prednisone in 260 older patients), in the induction phase, VTP and VMP resulted in similar response rates (partial response rates were 81% and 80%, respectively) and OS, with different side effect profiles. Incidences of infection were higher in the VMP group and VTP was associated with higher incidences of cardiac events. In the maintenance setting, CR rates were higher with bortezomib and thalidomide (46%) compared to bortezomib and prednisone (39%). In the updated report, the median PFS and the 5-year OS rate were also superior for bortezomib and thalidomide (39 months and 69%, respectively) compared with bortezomib and prednisone (32 months and 50%, respectively), but the differences were not statistically significant. The achievement of CR was associated with a significantly longer PFS \((P < .001) \) and 5-year OS \((P < .001) \). However, peripheral neuropathy was higher with bortezomib and thalidomide (9%) compared to bortezomib and prednisone (3%).

In another phase III study, the 4-drug combination of bortezomib, melphalan, prednisone, and thalidomide (VMPT) followed by maintenance with bortezomib and thalidomide (VT) was associated with higher response rates and PFS compared to VMP alone but did not result in an improvement in OS. The 3-year OS rates were 89% and 87%, respectively, for VMPT followed by VT and with VMP \((P = .77) \). VMPT followed by VT was also associated with higher grade 3 or 4 toxicities (neutropenia and cardiologic and thromboembolic events). An updated analysis of this study (with a median follow-up of 47.2 months) showed that the VMPT-VT regimen significantly prolonged OS compared to VMP, especially in patients younger than 75 years (5-year OS rates were 67.8% and 49.9%, respectively; \(P = .01) \). The VMPT-VT regimen also reduced the risk of death by 37% in patients 67 to 75 years of age.

In a phase II study, a sequential approach incorporating bortezomib-based induction therapy (bortezomib, doxorubicin, and dexamethasone) and ASCT followed by maintenance therapy with lenalidomide improved overall response rates in older patients with
newly diagnosed multiple myeloma. These findings have to be confirmed in randomized studies.495

Dexamethasone-Based Combination Therapy

Dexamethasone-based regimens are associated with increased mortality and severe hematologic toxicities compared to MP in older patients with newly diagnosed multiple myeloma who are not eligible for HDT/ASCT.496,497 In a large randomized trial (IFM 95-01), which compared MP with dexamethasone-based regimens (dexamethasone, alone or in combination with melphalan or interferon), while there was no difference in OS between the 4 treatment groups, the response rate was significantly higher in patients receiving dexamethasone and melphalan. The PFS was significantly better for patients receiving MP and melphalan and dexamethasone; however, the toxicities associated with dexamethasone-based regimens (severe pyrogenic infections in the melphalan-dexamethasone arm; hemorrhage, severe diabetes, and gastrointestinal and psychiatric complications in the dexamethasone arms) were significantly higher than with MP.496

The results of a recent randomized trial suggest the low-dose dexamethasone used in combination with lenalidomide is associated with better short-term OS and lower toxicity than high-dose dexamethasone and lenalidomide in patients with newly diagnosed myeloma.497 DVT, infection including pneumonia, and fatigue were the most common grade 3 or 4 toxicities.

Deep Vein Thrombosis Prophylaxis

The incidence of venous and arterial thrombosis increases with the use of thalidomide or lenalidomide in combination with chemotherapy or dexamethasone. In a phase III randomized trial, aspirin and fixed low-dose warfarin showed similar safety and efficacy in reducing thromboembolic complications compared to low-molecular-weight heparin (LMWH) in patients with myeloma treated with thalidomide-based regimen, whereas in older patients LMWH was more effective than warfarin.498 DVT prophylaxis with LMWH is recommended for older patients receiving regimens containing thalidomide or lenalidomide.

Myelodysplastic Syndromes

Myelodysplastic syndromes (MDS) are a diverse group of clonal hematologic disorders characterized by ineffective hematopoiesis subsequently leading to cytopenias and potential transformation to AML. In randomized phase III trials, DNA methyl transferase inhibitors such as azacitidine and decitabine have been shown to improve quality of life by decreasing the risk of AML transformation as well as transfusion dependence compared to conventional regimens or best supportive care in patients with high-risk MDS.499-503

The subgroup analysis of the AZA-001 trial demonstrated that azacitidine significantly improved OS compared to conventional care, with no increased risk of toxicity in older patients (75 years or older) with intermediate- or high-risk MDS.504 The 2-year OS rates were 55\% vs. 15\%, respectively ($P < 0.001$). In a study of 282 patients with high-risk MDS, Itzykon et al identified previous treatment with low-dose cytosine arabinoside, bone marrow blasts >15\%, and abnormal or complex karyotype as predictors of lower response rates; performance status ≥ 2, intermediate- and poor-risk cytogenetics, presence of circulating blasts, and red blood cell transfusion dependency ≥ 4 units/8 weeks were independent predictors of poorer OS.505 For patients with higher-risk MDS, azacitidine is given 7 days in a row. This schedule may be challenging for older patients due to logistic or transportation problems. In a phase II study, azacitidine schedule of 5+2+2 (5 days on, 2 days off, 2 days on) did not seem to negatively impact the
response rate or duration of response in older patients 65 years or older.506

A recent report from the Spanish Registry of MDS also demonstrated the equal efficacy of 3 different schedules of azacytidine (5-0-0, 5-2-2, and 7 days) in older patients (107 patients; 75 years or older) with low-intermediate risk and intermediate high-risk MDS. Transfusion independence was achieved in 40\% of patients. With a median follow-up of 14 months, the median OS was 18 months and the probability of OS at 2 years was 34\%.507 A 5-day schedule is not recommended for patients with high-risk MDS. Azacitidine has also been shown to be a feasible and effective treatment for older patients (70 years or older) with low-risk MDS.508,509

In the two large studies that included predominantly older patients with low- and high-risk MDS, decitabine (5-day schedule given as 15 mg/m2 every 8 hours for 3 days at a dose of 135 mg/m2 per course) resulted in durable responses, hematologic improvement and improved time to AML transformation or death.501,510 However, in a phase III study of 232 older patients with intermediate- or high-risk MDS ineligible for intensive chemotherapy, decitabine resulted in improvement in PFS (6.6 vs. 3.0 months; \(P = .004\)) and AML transformation (22\% vs. 33\% with best supportive care), but there was no significant difference in OS (10.1 vs. 8.5 months; \(P = .38\)) and AML-free survival (8.8 vs. 6.1 months; \(P = .24\)) compared to best supportive care.503 Longer duration of MDS and prior therapy were predictive factors for achieving CR, whereas abnormalities of chromosomes 5 and/or 7, older age, and prior therapy were adverse prognostic factors for survival.502

Lenalidomide has also been effective in transfusion-dependent patients with low-risk MDS with 5q deletions, resulting in the reduction of transfusion requirements and reversal cytologic and cytogenetic abnormalities.511,512 The drug also has been shown to improve transfusion independence in patients with low-risk MDS without deletion 5q.513 Although the median age of patients included in these studies is early 70s, there are little data available regarding the risks and benefits at the extremes of age.

Non-Hodgkin’s Lymphoma

In randomized clinical trials, the outcome in older patients who received full-dose anthracycline-based therapy was comparable to that of younger patients. However, the CR rates dropped to 45\% in patients 70 years or older.514 Age and serum interleukin-6 levels have been identified as independent prognostic factors for CR and failure-free survival in patients with DLBCL.515-519 Rituximab (an anti CD-20 monoclonal antibody) has been well tolerated and effective in the treatment of older patients with DLBCL with no apparent increase in toxicity. A number of randomized trials that included older patients exclusively have shown that the addition of rituximab to CHOP improves survival in patients with advanced-stage DLBCL.242,520-522

Hepatitis B virus (HBV) reactivation has been reported to occur in patients treated with chemotherapy with or without rituximab; treatment with rituximab alone is also a risk factor for HBV reactivation.523 Antiviral prophylaxis has been shown to prevent HBV reactivation associated with chemoinmunotherapy.524-526 Due to the significant risk of HBV reactivation associated with rituximab, older patients receiving rituximab should be monitored for HBV reactivation as outlined in the NCCN Guidelines for NHL.

Summary

Cancer is the leading cause of death in women and men aged 60 to 79 years. The biologic characteristics of certain cancers are different in older patients compared to their younger counterparts, and older
patients also have decreased tolerance to chemotherapy. Nevertheless, advanced age alone should not be the only criteria to preclude effective cancer treatment that could improve quality of life or lead to a survival benefit in older patients. Treatment should be individualized based on the nature of the disease, the physiologic status of the patient, and the patient's preferences.

Chronologic age is not reliable in estimating life expectancy, functional reserve, or the risk of treatment complications. The best guide as to whether cancer treatment is appropriate may be provided by careful assessment of the older patient. CGA can be utilized to assess life expectancy and risk of morbidity from cancer in older patients. CGA in turn can enable physicians to develop a coordinated plan for cancer treatment as well as guide interventions tailored to the patient's problems.
References

30. Poldal M, del Ser T. Normative data and determinants for the timed "up and go" test in a population-based sample of elderly individuals

89. Cordell CB, Borson S, Boustani M, et al. Alzheimer's Association recommendations for operationalizing the detection of cognitive...

246. Relling MV, Boyett JM, Blanco JG, et al. Granulocyte colony-stimulating factor and the risk of secondary myeloid malignancy...

318. Cuzick J, Sestak I, Baum M, et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year...

332. Malmstrom A, Gronberg BH, Marosi C, et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the

