Thrombotic thrombocytopenic purpura-hemolytic uremic syndrome following allogeneic HPC transplantation: a diagnostic dilemma

James N. George, Xiaoning Li, Jay R. McMinn, Deirdra R. Terrell, Sara K. Vesely, and George B. Selby

BACKGROUND: Thrombotic thrombocytopenic purpura-hemolytic uremic syndrome (TTP-HUS) has been described as a specific sequela of allogeneic HPC transplantation (HPCT). Nevertheless, because multiple transplant-related sequelae can cause the characteristic clinical features of TTP-HUS, the diagnosis is difficult.

STUDY DESIGN AND METHODS: All English-language articles describing patients with TTP-HUS following HPCT were identified. Articles reporting five or more total patients, including at least one patient diagnosed with TTP-HUS following allogeneic HPCT, were reviewed. All articles describing autopsies of patients diagnosed with TTP-HUS following allogeneic HPCT were also reviewed.

RESULTS: Thirty-five articles reporting 5 or more total patients described 447 patients diagnosed with TTP-HUS following allogeneic HPCT. The frequency of diagnosis of TTP-HUS following allogeneic HPCT varied by 125-fold (0.5%-63.6%). Twenty-eight different sets of diagnostic criteria were described in the 35 articles; 25 articles included both RBC fragmentation and increased serum LDH. Many risk factors described as correlating with the diagnosis of TTP-HUS also predict greater risk for multiple transplant-related complications. Benefit of plasma exchange treatment could not be documented.

CONCLUSIONS: The clinical features of TTP-HUS following allogeneic HPCT may be caused by common transplant-related complications; the benefit from plasma exchange treatment is uncertain.

ABBREVIATIONS: HPCT = HPC transplantation; TTP-HUS, thrombotic thrombocytopenic purpura-hemolytic uremic syndrome.

From the Hematology-Oncology Section, Department of Medicine, College of Medicine, and the Department of Biostatistics and Epidemiology, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.

Address reprint requests to: James N. George, MD, Hematology-Oncology Section, The University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73190; e-mail: James-George@OUHSC.edu.

TRANFUSION 2004;44:294-304.
assessments by multiple reviewers. This review is limited to patients with allogeneic HPCT because TTP-HUS is not frequently reported following procedures with autologous PBPC support.

METHODS

Literature search

Ovid software was used to search the Medline database from January 1, 1966, to October 16, 2003. The key words and MeSH terms searched for HPCT were "bone marrow transplantation," "bone marrow transplant," "hematopoietic stem cell transplantation," or "stem cell transplant." The key words and MeSH terms searched to identify patients diagnosed with TTP-HUS were "thrombotic thrombocytopenic purpura," "hemolytic-uremic syndrome," "thrombotic thrombocytopenic purpura-hemolytic uremic syndrome," "TTP," "HUS," "TTP-HUS," "thrombotic microangiopathic," "TMA," "microangiopathy," "intravascular hemolysis," "plasma exchange," and "plasmapheresis." The search was limited to English language. All articles identified by both one of the HPCT terms and one of the TTP-HUS terms were retrieved. For publications from 1989 to 2003, alternative literature search software (Reference Update) was also used. The bibliographies of all retrieved articles, including articles not selected for further review, were searched to identify additional articles.

Criteria for article selection

Articles were selected for further review if they reported five or more total patients, to avoid reports of exceptional patients. Articles that did not report primary patient data, abstracts with incomplete data, and articles that described only autologous HPCT were not reviewed. Articles reporting five or more total patients were reviewed to determine whether they described patients diagnosed with TTP-HUS following allogeneic HPCT. As we reviewed these data, we determined that few autopsy examinations of patients who were diagnosed with TTP-HUS following allogeneic HPCT have been reported. Therefore, for analysis of autopsy data, we searched all articles describing patients diagnosed with TTP-HUS following allogeneic HPCT, including abstracts and case reports of less than five total patients, to identify all reports of autopsy examinations.

Criteria for patient selection

Patients were selected for review if they were diagnosed with TTP-HUS following allogeneic HPCT, regardless of the terms used to describe these syndromes. A variety of diagnostic terms was used in the 35 case series reporting five or more total patients identified by our systematic review: thrombotic microangiopathy, 14; TTP, 7; HUS, 5; TTP-HUS, 3; microangiopathic hemolytic anemia, 3; nephrotoxicity, 2 (both articles reporting patients as nephrotoxicity also described their disorder as resembling TTP or HUS); and intravascular hemolysis with renal insufficiency. 1. Although some of these terms may not imply the diagnosis of TTP-HUS, patients were included because the descriptions included microangiopathic hemolysis, the hallmark diagnostic sign of TTP-HUS, and the management with plasma therapy indicated that the authors considered these syndromes to be comparable to TTP-HUS. The diagnosis of TTP-HUS in these articles was accepted; no reassessment of the diagnosis was attempted. The same criteria were used to select patients in the additional articles reporting autopsies. The term TTP-HUS, rather than thrombotic microangiopathy, 1,3 is used in this report because these syndromes have been described as TTP in recent reviews, 2, 4 because both TTP and HUS have been commonly used to describe these patients in case reports and because neither current diagnostic criteria nor pathologic features distinguish TTP from HUS. Furthermore, it is the diagnosis of TTP that requires a decision regarding plasma exchange treatment and therefore creates the diagnostic and management dilemma.

Article assessment

Each article was reviewed independently by two of the authors to determine patient eligibility. Each article reporting five or more total patients that described at least one patient diagnosed with TTP-HUS following allogeneic HPCT was further reviewed by two of the authors using a standard form and a priori criteria for analysis of the individual patients. The additional articles reporting autopsies were also reviewed by two of the authors. Disagreements were resolved by consensus among the authors.

RESULTS

Figure 1 describes the results of the literature search and the selection of articles and patients for review. The literature search identified 99 articles; 35 articles reported 5 or more patients and also included at least 1 patient diagnosed with TTP-HUS following allogeneic HPCT. These articles described 5423 patients who had had allogeneic HPCT; 447 (8.2%) patients were diagnosed with TTP-HUS. Ten additional articles reported autopsy information on 11 patients diagnosed with TTP-HUS following allogeneic HPCT.

Table 1 describes each of the 35 articles with 5 or more total patients that reported at least one patient diagnosed with TTP-HUS following allogeneic HPCT. Thirty (86%) reports are from single institutions; 18 (51%) reports are
from the United States; and 20 countries contributed to these studies, including 17 countries participating in the one international study. The largest number of patients with TTP-HUS following allogeneic HPCT, 102 (23%) of all 447 patients, were reported from Munich, Germany. The frequency of diagnosis of TTP-HUS among all patients with allogeneic HPCT was reported in 24 articles; it varied by 125-fold from 0.5 percent to 63.6 percent; the median frequency of diagnosis was 7.9 percent (Table 1). Twenty-nine articles reported the interval between HPCT and the diagnosis of TTP-HUS; the range was 3 to 890 days following transplantation; the reported median (or mean, when the median was not reported) intervals were 19 to 210 days.

Twenty-eight different sets of diagnostic criteria for TTP-HUS were used in these 35 articles (Table 2). Although we describe 19 different diagnostic criteria, some are merely different ways to interpret the course of anemia and thrombocytopenia (Table 2). RBC fragmentation and an increased serum LDH, evidence for microangiopathic hemolysis, were the most frequently cited criteria, in 31 and 25 articles, respectively. In 6 articles, these were the only criteria required to make the diagnosis of TTP-HUS; 3 of these 6 articles were from one institution (Pittsburgh, PA).

Potential risk factors for the diagnosis of TTP-HUS were assessed in 14 articles (Table 3). Twenty-three different demographic, primary disease, or transplant-related criteria were reported to correlate or not correlate with the risk for the diagnosis of TTP-HUS.

Transplant-related complications were reported in many of the patients diagnosed with TTP-HUS. Acute GVHD (Grades II-IV) was described in 185 (42%) patients. Systemic viral infections were described in 79 (18%) patients; 24 (30%) of these patients had cytomegalovirus infections. Systemic bacterial infections were described in 47 (11%) patients and systemic fungal infections in 30 (7%) patients.

Treatment was either explicitly reported or determined from a summary of the clinical course for 334 (75%) of the 447 patients (Table 4); plasma exchange was described for 184 (55%) of these 334 patients. Many patients were managed only by withdrawing or decreasing the dose of cyclosporine. In some patients there was no
treatment intervention either because of critical illness and rapid death or because the TTP-HUS was diagnosed with only minimal laboratory abnormalities, without clinical illness. Table 4 compares the mortality of patients treated with plasma exchange, 82 percent, to patients not treated with plasma exchange, 50 percent.

Mortality rates, reported in 31 articles, varied from 0.22-25 to 100 percent;10,11,23,26-28 the median mortality rate was 75 percent (Table 1). Overall mortality for the 379 patients for whom survival information was reported was 61 percent. The time of death was reported for 123 patients; 101 (82%) patients died within 3 months of the diagnosis of TTP-HUS.

Complete postmortem examinations were reported for 35 patients, 24 from the articles reporting 5 or more patients that were included in our systematic review10,21,27-34 and 11 from articles reporting fewer than 5 patients.35-41 Most autopsy descriptions were very brief, only one or two sentences per patient for 18 of the 35 patients. The cause of death was attributed to HUS in 3 patients, related to the observation of renal thrombotic microangiopathy. In the other 32 patients, the cause of death was attributed to infection in 19 patients, diffuse alveolar hemorrhage in 7 patients, venoocclusive disease in 3 patients, and acute GVHD, central nervous system hemorrhage, and relapsed acute lymphocytic leukemia in

<table>
<thead>
<tr>
<th>Country (city)</th>
<th>Publication date</th>
<th>Accrual dates</th>
<th>Reference number(s)</th>
<th>All allogeneic HPCT patients</th>
<th>Patients diagnosed with TTP-HUS (% of all HPCT patients)</th>
<th>TTP-HUS patients treated with PE†</th>
<th>Number who died (% of patients treated with PE)</th>
<th>Mortality of all patients diagnosed with TTP-HUS (% of all TTP-HUS patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US (Seattle, WA)</td>
<td>1981</td>
<td>NA</td>
<td>11</td>
<td>16</td>
<td>3 (19)</td>
<td>0 (0)</td>
<td>3 (100)</td>
<td></td>
</tr>
<tr>
<td>Australia (Sydney)</td>
<td>1983</td>
<td>1975-1980</td>
<td>10</td>
<td>34</td>
<td>2 (6)</td>
<td>0 (0)</td>
<td>2 (100)</td>
<td></td>
</tr>
<tr>
<td>UK (London)</td>
<td>1988</td>
<td>1987-1987</td>
<td>30</td>
<td>215</td>
<td>6 (3)</td>
<td>1 (17)</td>
<td>1 (100)</td>
<td>4 (67)</td>
</tr>
<tr>
<td>US (Boston, MA)</td>
<td>1988</td>
<td>1980-1987</td>
<td>22</td>
<td>NA</td>
<td>3</td>
<td>0 (0)</td>
<td>2 (0)</td>
<td></td>
</tr>
<tr>
<td>US (Milwaukee, WI)</td>
<td>1988</td>
<td>NA</td>
<td>33</td>
<td>NA</td>
<td>5</td>
<td>0 (0)</td>
<td>2 (40)</td>
<td></td>
</tr>
<tr>
<td>Germany (Munich)</td>
<td>1989</td>
<td>NA</td>
<td>15</td>
<td>77</td>
<td>49 (64)</td>
<td>3 (6)</td>
<td>NA</td>
<td>7 (14)</td>
</tr>
<tr>
<td>France (Paris)</td>
<td>1989</td>
<td>NA</td>
<td>23</td>
<td>3</td>
<td>1 (33)</td>
<td>0 (0)</td>
<td>2 (0)</td>
<td></td>
</tr>
<tr>
<td>US (Minneapolis, MN)</td>
<td>1991</td>
<td>1974-1990</td>
<td>29</td>
<td>NA</td>
<td>5</td>
<td>3 (60)</td>
<td>6 (55)</td>
<td>4 (80)</td>
</tr>
<tr>
<td>US (Boston, MA)</td>
<td>1991</td>
<td>1983-1989</td>
<td>24</td>
<td>56</td>
<td>5 (9)</td>
<td>2 (40)</td>
<td>0 (0)</td>
<td>1 (23)</td>
</tr>
<tr>
<td>US (Columbus, OH)</td>
<td>1991</td>
<td>1983-1990</td>
<td>32</td>
<td>182</td>
<td>3 (2)</td>
<td>0 (0)</td>
<td>2 (67)</td>
<td></td>
</tr>
<tr>
<td>US (Missouri)</td>
<td>1991</td>
<td>1985-1988</td>
<td>75</td>
<td>112</td>
<td>7 (6)</td>
<td>7 (100)</td>
<td>6 (86)</td>
<td></td>
</tr>
<tr>
<td>Australia (Westmead)</td>
<td>1995</td>
<td>1981-1993</td>
<td>31, 74</td>
<td>115</td>
<td>5 (4)</td>
<td>4 (80)</td>
<td>3 (75)</td>
<td>4 (80)</td>
</tr>
<tr>
<td>US (Milwaukee, WI)</td>
<td>1995</td>
<td>1988-1993</td>
<td>76</td>
<td>NA</td>
<td>9</td>
<td>8 (89)</td>
<td>6 (75)</td>
<td>7 (78)</td>
</tr>
<tr>
<td>US (Pittsburgh, PA)</td>
<td>1995</td>
<td>1992-1993</td>
<td>17</td>
<td>52</td>
<td>22 (43)</td>
<td>7 (32)</td>
<td>6 (86)</td>
<td>8 (36)</td>
</tr>
<tr>
<td>US (Pittsburgh, PA)</td>
<td>1996</td>
<td>1993-1994</td>
<td>19</td>
<td>NA</td>
<td>5</td>
<td>5 (100)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>US (multiple)</td>
<td>1996</td>
<td>NA</td>
<td>20</td>
<td>NA</td>
<td>52</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Spain (Madrid)</td>
<td>1997</td>
<td>1984-1996</td>
<td>34</td>
<td>NA</td>
<td>10</td>
<td>10 (100)</td>
<td>7 (70)</td>
<td>7 (70)</td>
</tr>
<tr>
<td>Japan (Nagoya)</td>
<td>1998</td>
<td>1992-1995</td>
<td>25</td>
<td>122</td>
<td>5 (4)</td>
<td>0 (100)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>US (Los Angeles, CA)</td>
<td>1998</td>
<td>1983-1996</td>
<td>26</td>
<td>NA</td>
<td>7</td>
<td>7 (100)</td>
<td>7 (100)</td>
<td>7 (100)</td>
</tr>
<tr>
<td>Japan (Shimane)</td>
<td>1999</td>
<td>1993-1995</td>
<td>77</td>
<td>24</td>
<td>4 (17)</td>
<td>0 (0)</td>
<td>2 (83)</td>
<td>2 (83)</td>
</tr>
<tr>
<td>Italy (multiple)</td>
<td>1999</td>
<td>1985-1995</td>
<td>16</td>
<td>1759</td>
<td>9 (0.5)</td>
<td>6 (67)</td>
<td>5 (83)</td>
<td>5 (56)</td>
</tr>
<tr>
<td>Japan (multiple)</td>
<td>1999</td>
<td>1997-1998</td>
<td>78</td>
<td>12</td>
<td>3 (25)</td>
<td>0 (0)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Netherlands (Utrecht)</td>
<td>1999</td>
<td>NA</td>
<td>63</td>
<td>NA</td>
<td>4</td>
<td>1 (25)</td>
<td>1 (100)</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Italy (Padova)</td>
<td>2000</td>
<td>1994-1997</td>
<td>79</td>
<td>131</td>
<td>28 (21)</td>
<td>16 (57)</td>
<td>7 (44)</td>
<td>12 (43)</td>
</tr>
<tr>
<td>US (Oklahoma City, OK)</td>
<td>2001</td>
<td>1989-1998</td>
<td>46</td>
<td>222</td>
<td>17 (7)</td>
<td>17 (100)</td>
<td>6 (100)</td>
<td>16 (94)</td>
</tr>
<tr>
<td>US (multiple)</td>
<td>2001</td>
<td>1989-1999</td>
<td>27</td>
<td>NA</td>
<td>7</td>
<td>6 (86)</td>
<td>6 (100)</td>
<td>7 (100)</td>
</tr>
<tr>
<td>UK (Bristol)</td>
<td>2001</td>
<td>1993-1999</td>
<td>80</td>
<td>456</td>
<td>22 (5)</td>
<td>17 (77)</td>
<td>16 (94)</td>
<td>19 (86)</td>
</tr>
<tr>
<td>US (Baltimore, MD)</td>
<td>2001</td>
<td>1999</td>
<td>28</td>
<td>NA</td>
<td>6</td>
<td>0 (0)</td>
<td>6 (100)</td>
<td></td>
</tr>
<tr>
<td>Germany (Munich)</td>
<td>2002</td>
<td>1990-1996</td>
<td>14</td>
<td>364</td>
<td>53 (15)</td>
<td>3 (16)</td>
<td>2 (67)</td>
<td></td>
</tr>
<tr>
<td>Canada (Toronto)</td>
<td>2002</td>
<td>1992-1999</td>
<td>81</td>
<td>603</td>
<td>25 (4)</td>
<td>25 (100)</td>
<td>24 (96)</td>
<td>24 (96)</td>
</tr>
<tr>
<td>International (multiple)</td>
<td>2002</td>
<td>1996</td>
<td>13</td>
<td>406</td>
<td>23 (6)</td>
<td>5 (22)</td>
<td>4 (80)</td>
<td>16 (70)</td>
</tr>
<tr>
<td>Japan (Yokohama)</td>
<td>2003</td>
<td>1994-2001</td>
<td>47</td>
<td>50</td>
<td>8 (16)</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>US (Baltimore, MD)</td>
<td>2003</td>
<td>1995-1999</td>
<td>21</td>
<td>55</td>
<td>11 (20)</td>
<td>11 (100)</td>
<td>10 (91)</td>
<td>10 (91)</td>
</tr>
<tr>
<td>US (Rochester, NY)</td>
<td>2003</td>
<td>1999-2001</td>
<td>4</td>
<td>118</td>
<td>8 (7)</td>
<td>8 (100)</td>
<td>5 (63)</td>
<td>5 (63)</td>
</tr>
</tbody>
</table>

* Each of the 35 articles reporting five or more total patients and at least one patient diagnosed with TTP-HUS following allogeneic HPCT is listed, with the country and city of the study, in the order of the publication year and patient accrual dates. The total number of patients with allogeneic HPCT is presented; in some articles either the total number of patients with HPCT was not reported or the patients with allogeneic and autologous transplants were not distinguished. Two citations are listed as the references for the report from Australia (Westmead)31,74 because one of the patients from this case series who was diagnosed with TTP-HUS was described in detail in a separate single-patient case report.31 Some of the patients described in the 3 articles from Pittsburgh17-19 were reported in more than one article.
† PE = plasma exchange.
<table>
<thead>
<tr>
<th>Diagnostic criteria</th>
<th>Reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>75</td>
</tr>
<tr>
<td>RBC fragmentation</td>
<td>31</td>
</tr>
<tr>
<td>LDH increase</td>
<td>X</td>
</tr>
<tr>
<td>PLT decrease</td>
<td>X</td>
</tr>
<tr>
<td>Renal failure</td>
<td>X</td>
</tr>
<tr>
<td>Neurologic abnormality</td>
<td>X</td>
</tr>
<tr>
<td>Hb decrease</td>
<td>X</td>
</tr>
<tr>
<td>No DIC</td>
<td>X</td>
</tr>
<tr>
<td>Negative DAT</td>
<td>X</td>
</tr>
<tr>
<td>Increased PLT</td>
<td>X</td>
</tr>
<tr>
<td>Requirement for</td>
<td>X</td>
</tr>
<tr>
<td>RBC transfusion</td>
<td>X</td>
</tr>
<tr>
<td>Increased RBC</td>
<td>X</td>
</tr>
<tr>
<td>Transfusion requirement</td>
<td>X</td>
</tr>
<tr>
<td>Reticulocyte increase</td>
<td>X</td>
</tr>
<tr>
<td>Refractoriness to PLT transfusion</td>
<td>X</td>
</tr>
<tr>
<td>Sudden and persistent increase in LDH and BUN or Cr</td>
<td>X</td>
</tr>
<tr>
<td>Sudden and persistent decrease in Hb and PLTs</td>
<td>X</td>
</tr>
<tr>
<td>New-onset thrombocytopenia</td>
<td>X</td>
</tr>
<tr>
<td>Renal pathology demonstrating TMA</td>
<td>X</td>
</tr>
<tr>
<td>Fever</td>
<td>X</td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>X</td>
</tr>
</tbody>
</table>

* The diagnostic criteria reported in each of the 35 case series are presented in chronological order, from left to right. Diagnostic criteria are listed from top to bottom in the order of the frequency of their descriptions. Twenty-eight different sets of diagnostic criteria were described.

† Diagnosis required an increased LDH and at least two of the other five criteria.

‡ Diagnosis required the presence of either a decreased PLT count or Hb concentration.

§ Diagnosis required three of the five criteria.

Abbreviations: DIC = disseminated intravascular coagulation; BUN = blood urea nitrogen; Cr = creatinine; TMA = thrombotic microangiopathy.
one patient each. Among the 19 patients in whom death was attributed to infection, the most common etiologies were *Aspergillus* species (7 patients) and cytomegalovirus (6 patients). In 19 patients, arteriolar or capillary thrombi were described in the kidneys; fibrin thrombi were described in one lobe of the lungs in one patient and in the liver of another patient. Reports of 11 autopsies explicitly stated that there was no evidence for TTP-HUS. In no patients were systemic microthrombi described.

DISCUSSION

Case series describing TTP-HUS following allogeneic HPCT are characterized by extraordinary variability. Among the 35 reports assessed in this systematic review, 28 different sets of diagnostic criteria were used to establish the diagnosis of TTP-HUS; the frequency of the diagnosis varied by 125-fold, from 0.5 to 63.6 percent. Articles that did not describe patients with the diagnosis of TTP-HUS were not included in our systematic review. For example, one analysis of 58 patients with allogeneic HPCT described RBC fragmentation in nearly all patients but did not diagnose TTP-HUS in any patient. In addition to the variation of diagnostic frequency across transplant centers, variation among individual physicians within a single transplant center has...
also been described.46 These extreme variations document the difficulty of diagnosis and emphasize that TTP-HUS following allogeneic HPCT is not a well-defined syndrome.

The difficult diagnosis of TTP-HUS following allogeneic HPCT is understandable. These patients frequently are critically ill with multiple transplant-related complications, and many are rapidly deteriorating. Anemia and thrombocytopenia, the principal presenting features in previously well patients,5,6 are not reliable diagnostic criteria. The difficulty assessing anemia and thrombocytopenia is reflected in the many different diagnostic criteria that have been described for their evaluation (Table 2). Impaired renal function and mental status abnormalities may also have multiple different etiologies after allogeneic HPCT and are also of limited value as diagnostic criteria. Therefore, the diagnosis of TTP-HUS, often difficult in previously well patients,7 is always uncertain in patients who are critically ill with multiple concurrent systemic complications of allogeneic HPCT.

The most commonly used diagnostic criteria (Table 2), and those thought to be most specific for TTP-HUS following allogeneic HPCT,1 are the signs of microangiopathic hemolysis: RBC fragmentation and an increased serum LDH concentration. Nevertheless, RBC fragmentation occurs in almost all patients after allogeneic HPCT and therefore may also be an unreliable diagnostic criterion for TTP-HUS.45,47 RBC fragmentation is more severe after allogeneic HPCT compared to autologous HPCT, similar to the more frequent diagnosis of TTP-HUS following allogeneic HPCT compared to autologous HPCT.45

Common transplant-related complications can cause all of the diagnostic clinical features of TTP-HUS (Table 5). Aspergillus species and cytomegalovirus,58-56 the most common causes of posttransplant infections among the patients in this review, can cause systemic vascular damage resulting in microangiopathic hemolysis with severe RBC fragmentation and increased LDH levels.51-55 Other viruses that may cause posttransplant infections, adenovirus,56 human herpesvirus-6,57 and human parvovirus B19,58 can also cause severe microangiopathic hemolytic anemia and clinical features resembling TTP-HUS. Other transplant-related complications, such as acute GVHD,15,47 and cyclosporine toxicity,15,45,59 have also been associated with RBC fragmentation, increased serum LDH levels, thrombocytopenia, and renal failure.

Patients diagnosed with TTP-HUS following allogeneic HPCT may be expected to have complicated courses with multiple transplant-related complications because many of the risk factors that have been reported to correlate with the diagnosis of TTP-HUS (Table 3), such as older age, more advanced primary disease, and an unrelated or HLA-mismatched donor, are also risk factors for poor outcomes following allogeneic HPCT. Other risk factors reported to correlate with the diagnosis of TTP-HUS, such as acute GVHD, infection, hepatic venoocclusive disease, and mortality 180 days after HPCT, describe the actual occurrence of transplant-related complications.

Because a severe deficiency of the VWF-cleaving protease, termed ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type 1 repeats), has been described as a specific abnormality for TTP,60-62 ADAMTS13 activity has been measured in patients who were diagnosed with TTP-HUS following allogeneic HPCT. Five studies2,4,28,63,64 have reported ADAMTS13 activity levels in 40 patients diagnosed with TTP-HUS following allogeneic HPCT; none had a severe deficiency. In one report, the ADAMTS13 activity levels were normal in 38 of 62 patients and minimally decreased in 1 patient in each report. In one report, the ADAMTS13 activity levels were normal in 7 of 8 and 5 of 6 patients who were diagnosed with TTP-HUS following allogeneic HPCT. In one report, the ADAMTS13 activity levels were normal in 10 patients.4 In two reports the ADAMTS13 activity levels were normal in 7 of 8 and 5 of 6 patients who were diagnosed with TTP-HUS following allogeneic HPCT.

<table>
<thead>
<tr>
<th>Infection</th>
<th>Reported clinical features</th>
<th>Reference number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus species</td>
<td>Microangiopathic hemolytic anemia, (schistocytes, ↑ LDH), thrombocytopenia, focal neurologic abnormalities, renal failure, fever</td>
<td>51, 52</td>
</tr>
<tr>
<td>CMV</td>
<td>Microangiopathic hemolytic anemia, (schistocytes, ↑ LDH), thrombocytopenia, focal neurologic abnormalities, renal failure, fever</td>
<td>53-55</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>Microangiopathic hemolytic anemia, (schistocytes, ↑ LDH), thrombocytopenia, confusion, renal failure, fever</td>
<td>56</td>
</tr>
<tr>
<td>Human herpesvirus-6</td>
<td>Microangiopathic hemolytic anemia, (schistocytes, ↑ LDH), thrombocytopenia, renal failure, fever</td>
<td>57</td>
</tr>
<tr>
<td>Human parvovirus B19</td>
<td>Microangiopathic hemolytic anemia, (schistocytes, ↑ LDH), thrombocytopenia, confusion, renal failure, fever</td>
<td>58</td>
</tr>
</tbody>
</table>

* Systemic infections that can mimic the clinical features of TTP-HUS and that may occur after allogeneic HPCT. Selected references are listed that describe patients with these infections who presented with clinical features suggesting the diagnosis of TTP-HUS.
with TTP-HUS following allogeneic HPCT are consistent with reports of moderate deficiencies in a variety of critical illnesses, including severe systemic infections. For example, in the Oklahoma TTP-HUS Registry ADAMTS13 activity was measured in 16 patients who were initially diagnosed with TTP-HUS but in whom systemic infections or systemic malignancies were subsequently discovered to be the cause of their acute illness; the ADAMTS13 activity levels in these 16 patients were 8 to 100 percent (median, 35%).

Plasma exchange, the principal treatment for TTP-HUS in adults, cannot be documented to benefit patients diagnosed with TTP-HUS following allogeneic HPCT because of the limited data available to assess the effectiveness of plasma exchange treatment. Insufficient data were available to assess the response to plasma exchange by the conventional parameters used to assess the response of previously well patients who develop TTP-HUS: recovery from thrombocytopenia, achievement of a normal or near normal serum LDH concentration, beginning recovery of anemia, and survival for more than 30 days following completion of treatment. The time of death following the diagnosis of TTP-HUS was often not reported. Because recovery from anemia and thrombocytopenia cannot always be expected in patients following allogeneic HPCT, we attempted to document response to plasma exchange by the criteria of no further requirement for RBC or PLT transfusions; however, data were insufficient to evaluate transfusion requirements. The only available comparison between patients treated or not treated with plasma exchange was mortality, which was greater in patients treated with plasma exchange (Tables 1 and 4). Nevertheless, interpretation of these data is limited because the mortality varied from 0 to 100 percent among reported case series (Table 1) and because patients who were more critically ill were more likely to have been treated with plasma exchange. For example, in some patients the diagnosis of TTP-HUS was based only on abnormal laboratory observations, such as RBC fragmentation, rather than clinical features; in these patients who may not have been seriously ill, there was often no treatment intervention, or the only treatment was discontinuation or decreased dosage of cyclosporine.

The apparent ineffectiveness of plasma exchange treatment has been attributed to the absence of ADAMTS13 deficiency; however, we have previously demonstrated that severe ADAMTS13 deficiency does not identify all patients who are appropriately diagnosed with TTP-HUS and who may respond to plasma exchange treatment. The ineffectiveness of plasma exchange treatment may more likely be due to unrecognized alternative etiologies as the cause of the clinical features suggesting TTP-HUS. Clinical features characteristic of TTP-HUS may be the result of repeated exposure of the vascular endothelium to toxic agents both during the preparative radiation therapy or chemotherapy for HPCT and during the infections or other transplant-related complications that can occur during the first several months following HPCT (Table 5).

Although the reported mortality of patients diagnosed with TTP-HUS following allogeneic HPCT varied from 0 to 100 percent, the median mortality was high, 79 percent (Table 1). Autopsies have been reported in only 35 patients who have been diagnosed with TTP-HUS following allogeneic HPCT. The most commonly reported causes of death were infections caused by Aspergillus species or cytomegalovirus, consistent with the ability of these organisms to cause severe microangiopathic hemolytic anemia (Table 5) and therefore cause consideration of the diagnosis of TTP-HUS. No autopsy has been reported that demonstrated the systemic microthrombi that are the diagnostic abnormality of TTP-HUS. The importance of the absence of autopsy confirmation is that TTP-HUS was originally described as a unique pathologic entity and remained primarily a pathologic diagnosis for 50 years. In the current era of effective plasma exchange treatment, rapid diagnosis of TTP-HUS based on clinical features has become imperative, and the frequency of the diagnosis has increased sevenfold. Nevertheless, autopsy examination remains the "gold standard" diagnostic definition of TTP-HUS; if microvascular thrombi are not present in multiple organs, the diagnosis of TTP-HUS is excluded.

It has been suggested that earlier diagnosis and initiation of treatment may be beneficial for patients with suspected TTP-HUS following allogeneic HPCT. Nevertheless, accurate earlier diagnosis may be impossible to achieve, because there are no consistent diagnostic criteria and even at autopsy the diagnosis of TTP-HUS following allogeneic HPCT has not been confirmed. It has also been suggested that randomized clinical trials may be necessary to learn the appropriate management of patients diagnosed with TTP-HUS after allogeneic HPCT. Nevertheless, clinical trials may be impossible to design, because of the inevitably imprecise patient inclusion and exclusion criteria and the difficulty excluding transplant-related complications as the cause for the signs suggesting TTP-HUS.

Our opinion is that TTP-HUS is not a specific sequela of HPCT. Although TTP-HUS may occur in patients following allogeneic HPCT, the incidence may be no greater than that of the general population. Reasons to support this opinion are 1) the extreme variability of reported incidence and mortality, 2) the uncertainty of the diagnosis in these critically ill patients, 3) the potential for common transplant-related complications to cause the characteristic clinical features of TTP-HUS, and 4) the absence of autopsy documentation of systemic microthrombi, the characteristic pathologic feature of TTP-HUS. Rather than concern for earlier diagnosis, perhaps more appropriate...
management for patients with suspected TTP-HUS following allogeneic HPCT is a more deliberate assessment, to exclude, as carefully as possible, systemic infections or GVHD as the cause of the clinical signs suggesting TTP-HUS. Because plasma exchange treatment may provide minimal or no benefit (Table 4), but does have risk for major complications, it may be prudent to defer plasma exchange treatment until alternative etiologies for the signs suggesting TTP-HUS can be more confidently excluded. With continuing improvements in the prevention and management of transplant-related complications, such as the decreased risk for Aspergillus and cytomegalovirus infections, concern for TTP-HUS as a post-HPCT sequela may diminish.

REFERENCES

66. Sniecinski IJ, O’Donnell MR. Hemolytic complications of

disorders during primary cytomegalovirus infection. Arch

64. Vesely SK, George JN, Lammle B, et al. ADAMTS13 activity

63. van der Plas RM, Schiphorst ME, Huizinga EG, et al. von
Willebrand factor-proteolysis is deficient in classic, but not

factor-cleaving protease (ADAMTS13) in thrombotic disor-
ders: a severely deficient activity is specific for thrombotic

61. Tsai HM, Lian ECY. Antibodies to von-Willebrand factor-
cleaving protease in acute thrombotic thrombocytopenic

59. Pettitt AR, Clark RE. Thrombotic microangiopathy following

58. Kok RHJ, Wolfgaen MJHM, Klosters G. A syndrome
resembling thrombotic thrombocytopenic purpura associated

57. Matsuda Y, Hara J, Miyoshi H, et al. Thrombotic
microangiopathy associated with reactivation of human
herpesvirus-6 following high-dose chemotherapy with
autologous marrow transplantation in young children. Bone
Marrow Transplant 1999;24:919-23.

56. Fassas AB, Buddharaju LN, Rapoport A, et al. Fatal dissemi-
nated enzoviral infection associated with thrombotic
thrombocytopenic purpura after allogeneic bone marrow

disorders during primary cytomegalovirus infection. Arch

54. Jeejeebhoy FM, Zaltzman JS. Thrombotic microangiopathy
in association with cytomegalovirus infection in a

53. GEORGE ET AL.

52. Devine SM, Adkins DR, Khoury H, et al. Recent advances in
allogeneic hematopoietic stem cell transplantation. J Lab

51. Zaia JA. Cytomegalovirus infections. In: Thomas ED, Blume

50. Tschuchnigg M, Bradstock KF, Koutsis J, et al. A case of
thrombotic thrombocytopenic purpura following allogeneic

and vincristine in the treatment of hemolytic uremic
syndrome/thrombotic thrombocytopenic purpura associated

plasma exchange does not appear to be effective in the
management of thrombotic thrombocytopenic purpura/
hemolytic uremic syndrome following bone marrow

abnormalities and thrombotic microangiopathy following
bone marrow transplantation from HLA-matched unrelated
donors in patients with hematological malignancies. Bone

microangiopathy following allogeneic bone marrow

45. Tschuchnigg M, Bradstock KF, Koutsis J, et al. A case of
thrombotic thrombocytopenic purpura following allogeneic

44. Tschuchnigg M, Bradstock KF, Koutsis J, et al. A case of
thrombotic thrombocytopenic purpura following allogeneic

43. Tschuchnigg M, Bradstock KF, Koutsis J, et al. A case of
thrombotic thrombocytopenic purpura following allogeneic

42. Tschuchnigg M, Bradstock KF, Koutsis J, et al. A case of
thrombotic thrombocytopenic purpura following allogeneic

41. Tschuchnigg M, Bradstock KF, Koutsis J, et al. A case of
thrombotic thrombocytopenic purpura following allogeneic

40. Tschuchnigg M, Bradstock KF, Koutsis J, et al. A case of
thrombotic thrombocytopenic purpura following allogeneic

39. Tschuchnigg M, Bradstock KF, Koutsis J, et al. A case of
thrombotic thrombocytopenic purpura following allogeneic

38. Tschuchnigg M, Bradstock KF, Koutsis J, et al. A case of
thrombotic thrombocytopenic purpura following allogeneic

37. Tschuchnigg M, Bradstock KF, Koutsis J, et al. A case of
thrombotic thrombocytopenic purpura following allogeneic